98%
921
2 minutes
20
Background: Acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells, resulting in acute hypoxemic respiratory failure. Minocycline, a tetracycline antibiotic, is known to have excellent anti-inflammatory activity.
Objectives: The present study aims to reveal the protective effect and potential mechanism of the anti-inflammatory effects of minocycline on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells.
Methods: We investigated the role of minocycline in ALI mice and inflammation-induced damage to alveolar epithelial cells using various experimental approaches, including histological staining, enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR, flow cytometry, western blot analysis, and other relevant assays.
Results: Pre-treatment with minocycline effectively attenuated LPS-induced ALI in vivo by inhibiting inflammation and oxidative damage, improving pathological changes in the lungs, alleviating pulmonary edema and protein exudation, and suppressing neutrophil aggregation. In vitro, minocycline suppressed the inflammatory response of human alveolar epithelial A549 cells, as evidenced by the inhibition of inflammatory cytokine and oxidative damage biomarker expression, reduction in intracellular reactive oxygen species (ROS) production, alleviation of mitochondrial damage, and inhibition of cell apoptosis. Subsequent mechanistic studies revealed that the protective effects of minocycline against ALI may be attributed to its suppression of poly (ADP-ribose) polymerase-1 (PARP-1) and histone deacetylase 3 (HDAC3) expression.
Conclusions: In conclusion, our study presents minocycline as a potential candidate for ALI therapy and provides an experimental foundation for investigating its anti-inflammatory mechanisms in the treatment of ALI. Further therapeutic value awaits verification in clinical and preclinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297026 | PMC |
http://dx.doi.org/10.5812/ijpr-161381 | DOI Listing |
Front Immunol
August 2025
Sepsis Laboratory, Center for Translational Medicine, The Second College of Clinical Medicine, Henan University, Kaifeng, Henan, China.
[This corrects the article DOI: 10.3389/fimmu.2025.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China.
Introduction: The pathological mechanism of sepsis-related acute lung injury (ALI) is closely linked to mitochondrial dysfunction and pyroptosis. Although low-dose extracorporeal shock wave (SW) therapy has been widely utilized in tissue and organ injury repair, its role in sepsis-related ALI remains unclear. This study aimed to elucidate the regulatory mechanisms of SW on mitochondrial pyroptosis crosstalk in septic ALI.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Traditional studies of pulmonary fibrosis (PF) have focused on alveolar epithelial cells injury and abnormal myofibroblast aggregation, but recent studies have revealed that imbalances in pulmonary capillary homeostasis also play pivotal roles in this disease. The pulmonary microvasculature, composed of aerocyte capillary (aCap) and general capillary (gCap) endothelial cells, forms the core structure of the alveolar-capillary membrane. It performs key roles in gas exchange and nutrient/metabolite transport, while modulating the trafficking of inflammatory factors and immune cells and regulating alveolar damage repair.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China. Electronic address:
Background: H1N1 influenza virus can cause diffuse alveolar damage, such as pneumonia and pulmonary fibrosis, when it infects the respiratory tract. Metformin not only improves chronic inflammation but also has direct anti-inflammatory effects. Therefore, the focus of this study was on the molecular mechanism and regulatory mechanism of metformin against influenza virus in alleviating lung disease.
View Article and Find Full Text PDFNat Mater
September 2025
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.
View Article and Find Full Text PDF