98%
921
2 minutes
20
Continuous low-level exposure to pesticides is inevitable in daily life. Previous studies have demonstrated the adverse effects of pesticide exposure on lipid metabolism. However, population studies have focused primarily on individual pesticides and have short-term fluctuations, and the animal experiments used doses far higher than those exposed by the general population. In this study, urinary concentrations of metabolites of three classes of pesticides, including organophosphate, pyrethroid, and phenoxy carboxylic acid, were determined in 1858 participants of repeated cross-sectional biomonitoring programs from 2018 to 2022. We comprehensively analyzed the association of pesticide metabolites and pesticide exposure patterns with lipid metabolism biomarkers. The indirect effects of liver function markers in these associations were explored by using the structural equation model analysis. Generalized linear models showed that 3,5,6-trichloro-2-pyridinol and para-nitrophenol were positively correlated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride. In contrast, 3-phenoxybenzoic acid was negatively correlated with apolipoprotein B. Quantile g-computation and Bayesian Kernel Machine Regression showed a consistent gradual increase in high-density lipoprotein cholesterol and low-density lipoprotein cholesterol levels but a gradual decrease in apolipoprotein B levels with increasing exposure to pesticide mixtures. By analyzing the exposure patterns of different categories of pesticides, we found that the population has a high level of exposure to organophosphate pesticides, which disrupts lipid metabolism more significantly than other pesticides. Liver function exhibited significant mediating effects in the association between pesticide exposure and lipid metabolism biomarkers. The results indicated that pesticide exposure was significantly associated with lipid metabolism, and this association may be modulated by improvements in liver function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281205 | PMC |
http://dx.doi.org/10.1021/envhealth.5c00030 | DOI Listing |
Reproduction
October 2025
Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom.
In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.
Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.
PLoS One
September 2025
Department of Biological Sciences, University of Limerick, Limerick, Ireland.
This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
Adrenal lipomas are benign tumors containing ectopic adipose tissue in the adrenal gland, an organ that normally lacks both adipocytes and their progenitors. The origin of this ectopic fat remains enigmatic, and the absence of a genetic animal model has hindered its investigation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P], a key signaling lipid that regulates cellular growth and differentiation, is tightly regulated by the lipid phosphatases PTEN (phosphatase and tensin homolog) and SHIP2 (SH2-containing inositol phosphatase 2).
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.
Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.
Neurochem Res
September 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.
View Article and Find Full Text PDF