98%
921
2 minutes
20
Addressing complexity in the study of life sciences through Systems Biology and Systems Medicine has been transformative, making Systems Pharmacology the next logical step. In this review, we focus on physical stimuli, whose potential in pharmacology has been neglected, despite demonstrated therapeutic properties. To address this overlooked aspect of pharmacology, we aim to (i), highlight how physical stimuli (mechanical, optical, magnetic, electrical) influence inflammation; (ii) identify known overlaps among transduction mechanisms of physical stimuli and highlight the need for deeper understanding of these mechanisms; (iii) promote advanced network approaches as tools to understand this complexity and enhance the potential of anti-inflammatory physical therapies; and (iv), integrate physical stimuli into the mindset of pharmacologists. The overall purpose of this review is to spark questions rather than provide answers, and to drive research in this critically underexplored area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bph.70129 | DOI Listing |
Mater Horiz
September 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Advanced Polymer Materials, Chengdu, 610065, Sichuan, China.
Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.
Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.
View Article and Find Full Text PDFFront Neurol
August 2025
Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
Introduction: External continuous perturbations using a motion platform have been developed by employing either sum-of-sines (SoS) or a pseudorandom ternary sequence (PRTS) of numbers to quantify body sway evoked in the medial-lateral (ML) or anterior-posterior (AP) directions, which ultimately helps understand the human postural control system. These stimuli have been provided via pitch tilts of the motion platform for evaluations of AP balance responses or roll tilts for ML balance responses. However, little is known about whether a healthy postural control system responds to 2-dimensional (2D) perturbations similarly when the perturbation stimuli are provided in semicircular canal coordinates (i.
View Article and Find Full Text PDFFront Pharmacol
August 2025
General Surgery Department Three, Gansu Province Central Hospital, Lanzhou, China.
Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.
View Article and Find Full Text PDFPsychophysiology
September 2025
Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany.
Exercise influences visual processing and is accompanied by neural and physiological changes in the body. Yet, the underlying mechanisms by which neural and physiological responses to exercise impact ensuing perception remain poorly understood. In particular, the effects of exercise-induced cardiac changes on visual perception and electrophysiological activity are unclear.
View Article and Find Full Text PDF