Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salicylic acid (SA) is a pivotal phytohormone for plant responses to biotic and abiotic stresses. Plants have evolved two pathways to produce SA: the isochorismate synthase and phenylalanine ammonia lyase (PAL) pathways. Whereas the isochorismate synthase pathway has been fully identified, the PAL pathway remains incomplete. Here we report the full characterization of the PAL pathway for SA biosynthesis via functional analysis of rice (Oryza sativa) SA-DEFICIENT GENE 1 (OSD1) to OSD4. The cinnamoyl-coenzyme A (CoA) ligase OSD1 catalyses the conversion of trans-cinnamic acid to cinnamoyl-CoA, which is subsequently transformed to benzoyl-CoA via the β-oxidative pathway in peroxisomes. The resulting benzoyl-CoA is further converted to benzyl benzoate by the peroxisomal benzoyltransferase OSD2. Benzyl benzoate is subsequently hydroxylated to benzyl salicylate by the endoplasmic reticulum membrane-resident cytochrome P450 OSD3, which is ultimately hydrolysed to salicylic acid by the cytoplasmic carboxylesterase OSD4. Evolutionary analyses reveal that the PAL pathway was first assembled before the divergence of gymnosperms and has been conserved in most seed plants. Activation of the PAL pathway in rice significantly enhances salicylic acid levels and plant immunity. Completion of the PAL pathway provides critical insights into the primary salicylic acid biosynthetic pathway across plant species and offers a precise target for modulating crop immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408352PMC
http://dx.doi.org/10.1038/s41586-025-09175-9DOI Listing

Publication Analysis

Top Keywords

pal pathway
20
salicylic acid
16
isochorismate synthase
8
pathway
8
benzyl benzoate
8
pal
6
salicylic
5
acid
5
complete biosynthesis
4
biosynthesis salicylic
4

Similar Publications

Functional analysis of three peroxisomal cinnamate:CoA ligases in salicylic acid biosynthesis of Glycine max.

Plant Physiol Biochem

September 2025

Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; China-Mozambique "Belt and Road" Joint Laboratory on Smart Agriculture, Jinhua, 321004, China. Electronic address:

Salicylic acid (SA), a phenolic-derived secondary metabolite, serves as a critical signaling molecule in plant defense mechanisms. Contemporary phytochemical studies have identified two distinct biosynthetic pathways for SA production in plants: the isochorismate synthase (ICS)-mediated pathway and the phenylalanine ammonia-lyase (PAL)-dependent pathway. However, the enzymes participating in SA biosynthesis in soybean remain largely unknown.

View Article and Find Full Text PDF

Babaco mosaic virus BabMV induces defense metabolite production in papaya plants (Carica papaya).

Plant Physiol Biochem

August 2025

Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium. Electronic address:

While the physiological and molecular responses of plants to viral infections are well documented, the progressive metabolic changes at different stages of the infection and their functional implications are still poorly understood. Therefore, this study investigates the dynamics of metabolic changes in papaya plants infected with Babaco Mosaic Virus (BabMV). We inoculated papaya plants with BabMV and collected leaf samples at 2, 10, 15, and 30 days post-inoculation (dpi).

View Article and Find Full Text PDF

Background: Caffeic acid, one of the important phenolic compounds in plants, plays a significant role in enhancing the defense mechanisms and adaptation of plants to environmental stresses, including drought. This study aimed to investigate the effect of drought stress on the expression of genes involved in the biosynthesis of caffeic acid, photosynthetic mechanisms, and antioxidant enzyme activity in three cultivars of beans. The experiment was conducted in a split-plot design within a randomized complete block design, with three irrigation levels (50, 75, and 100% of water requirement) as the main factor and three bean cultivars (red, white, and pinto) as the sub-factor, with three replications.

View Article and Find Full Text PDF

Despite the success of endocrine therapy (ET) in treating hormone receptor-positive breast cancer, a significant proportion of patients relapse during or after treatment, making ET resistance a major clinical challenge. Previously we have shown that ET-resistant breast cancer cells exhibit reduced ceramide levels and an increased sensitivity to ceramide-induced cell death. Here, we demonstrate that ceramides induce a distinct transcriptional reprogramming in ET-resistant cells, characterized by upregulation of endoplasmic reticulum stress (EnRS) pathways.

View Article and Find Full Text PDF

The medicinal plant is known for its rich secondary metabolite content, which plays a critical role in its therapeutic properties. This study investigates the impact of UV-B radiation on the biosynthesis of secondary metabolites, including phenolic compounds, flavonoids, terpenes, carotenoids, and lycopene, as well as the expression of key biosynthetic genes (, , , , and ) in . Plants were exposed to UV-B radiation for 1 and 2 h, and metabolite content and gene expression were measured at intervals of 3, 6, 9, and 12 h post-exposure.

View Article and Find Full Text PDF