98%
921
2 minutes
20
Coinage metals Cu and Ag are widely reckoned as effective dopants in thermoelectric materials due to their ability to optimise carrier concentration while preserving high carrier mobility, attributed to their inherent dynamic features. Traditionally, Cu/Ag ions are introduced through eutectic reactions, which inevitably result in interstitial doping. Here, we develop an innovative solid solution doping strategy that enables targeted doping, whereby Cu ions exclusively occupy host lattice sites rather than interstitial sites. By combining first-principles calculations with in-situ experiments, we demonstrate that this targeted doping approach relies on ion diffusion and induces lattice renormalisation, effectively reducing lattice defects and suppressing hole concentration. Consequently, the 1 at.% Cu doped GeSbTe sample exhibits an exceptional figure-of-merit of 2.3 at 775 K along with a desirable average value of 1.4 scoping 300 to 775 K. The power density of the corresponding single-leg thermoelectric module is 2.23 W·cm under a temperature difference of 475 K. This work not only explains the kinetics behind dynamic doping behaviours, but also provide an original method to achieve high-quality functional materials with less lattice defects and a high carrier mobility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287393 | PMC |
http://dx.doi.org/10.1038/s41467-025-62078-1 | DOI Listing |
J Phys Chem Lett
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.
View Article and Find Full Text PDFJ Texture Stud
October 2025
Faculty of Chemical-Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, Sarıyer, Istanbul, Türkiye.
In this study, potato slices were fried in four different vegetable oils (corn, olive, palm olein, and sunflower) to investigate how oil type influences the characteristics of potato chips. The diffusion coefficient of oils was attempted to be correlated with the final moisture, oil uptake, and textural parameters of potato chips. The diffusion coefficients were determined using two approaches.
View Article and Find Full Text PDFSelective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.
View Article and Find Full Text PDFACS Nano
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
The integration of Mn in NaMnFe(PO)PO (NMFPP) enhances the energy density but compromises the Na mobility and structural stability due to limited electron hopping and pronounced Jahn-Teller effects. To address this, a structurally compatible anionic substitution strategy is implemented by partially replacing PO with bulkier and less electronegative SiO groups. The reinforced cathode exhibits enhanced rate performance, which is attributed to lattice expansion induced by the larger SiO units, thereby facilitating Na diffusion and reducing impedance during charge-discharge processes, as supported by GITT and DRT analyses.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
A series of six quinary rare-earth sulfides CeEuNaSiS, CeEuKSiS, CeEuRbSiS, CeEuCsSiS, CeEuAgSiS, and CeEuCuSiS were obtained in an alkali iodide flux using the boron-chalcogen mixture (BCM) method. Single crystal X-ray diffraction was used to determine the structures of the high quality single crystals that were grown; their elemental compositions were confirmed by energy-dispersive spectroscopy (EDS). The compounds crystallize in the hexagonal crystal system in the noncentrosymmetric space group 6.
View Article and Find Full Text PDF