The Mechanical Role of YAP/TAZ in the Development of Diabetic Cardiomyopathy.

Curr Issues Mol Biol

Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic cardiomyopathy (DCM) begins with a subclinical stage featuring cardiac hypertrophy, fibrosis, and disrupted signaling. These changes, especially fibrosis and stiffness, often lead to clinical heart failure. The mechanism involves metabolic dysregulation, oxidative stress, and inflammation, leading to cardiac damage and dysfunction. During the progression of the disease, the myocardium senses surrounding mechanical cues, including extracellular matrix properties, tensile tension, shear stress, and pressure load, which significantly influence the pathological remodeling of the heart through mechanotransduction. At the molecular level, the mechanisms by which mechanical cues are sensed and transduced to mediate myocardial mechanical remodeling in DCM remain unclear. The mechanosensitive transcription factors YAP and TAZ fill this gap. This article reviews the latest findings of how YAP and TAZ perceive a wide range of mechanical cues, from shear stress to extracellular matrix stiffness. We focus on how these cues are relayed through the cytoskeleton to the nucleus, where they trigger downstream gene expression. Here, we review recent progress on the crucial role of YAP and TAZ mechanotransduction in the pathological changes observed in DCM, including myocardial fibrosis, hypertrophy, inflammation, mitochondrial dysfunction, and cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110172PMC
http://dx.doi.org/10.3390/cimb47050297DOI Listing

Publication Analysis

Top Keywords

mechanical cues
12
yap taz
12
diabetic cardiomyopathy
8
extracellular matrix
8
shear stress
8
mechanical
5
mechanical role
4
role yap/taz
4
yap/taz development
4
development diabetic
4

Similar Publications

Effective locomotion requires physiological systems to adapt to instabilities. While gait perturbation recovery often appears rapid, it is possible that longer-lasting effects may be present. Therefore, this study explored recovery trends of gait dynamics following an experimenter-induced perturbation.

View Article and Find Full Text PDF

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF

Biomechanic regulation of neutrophil extracellular traps in the cardiovascular system.

Trends Immunol

September 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.

View Article and Find Full Text PDF

Conventional wound dressings primarily focus on biochemical regulation, often neglecting the potential benefits of mechanical cues in tissue regeneration. We report a Janus hydrogel (QPJ hydrogel) that synergistically integrates biochemical modulation with temperature-responsive mechanical contraction for advanced chronic wound management. The hydrogel is constructed from quaternary ammonium chitosan (QCS) and N-isopropylacrylamide (NIPAM), with an outer PNIPAM layer that generates a directional contractile stress >25 kPa at physiological temperature.

View Article and Find Full Text PDF