Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Delayed leaf senescence (staygreen) is an important agronomic trait associated with enhanced resilience to abiotic and biotic stresses and improved productivity. While senescence induces large-scale metabolomic changes, the characterization of metabolic shifts and the identification of key metabolites and pathways determining the staygreen trait remain limited. Here, we generated a temporal map of the physiological and metabolic variation in genetically diverse maize (Zea mays) inbred lines spanning the staygreen spectrum. Integrated analysis of the captured phenotypic variation revealed substantial metabolic perturbations and identified 42 primary and 141 specialized leaf metabolites. Non-staygreen inbred lines were enriched in primary metabolites represented by sugar alcohols (notably mannitol and erythritol), and amino acids including phenylalanine and arginine. In contrast, the staygreen inbred lines accumulated higher levels of specialized metabolites, primarily phenylpropanoids. Metabolome-to-genome mapping identified 56 candidate genes expressed in adult maize leaves responsible for the metabolic changes that occur during senescence. Reverse genetics validated the role of naringenin chalcone and eriodictyol in maize and Arabidopsis thaliana leaf senescence, demonstrating a conserved function of these flavonoids across monocots and dicots. Together, our results reveal the coordinated physiological and metabolic programs that govern senescence and provide a curated set of metabolites and genes underlying this complex process.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plcell/koaf176DOI Listing

Publication Analysis

Top Keywords

inbred lines
12
leaf senescence
8
physiological metabolic
8
metabolic
6
senescence
6
metabolites
5
temporal analysis
4
analysis physiological
4
physiological phenotypes
4
phenotypes identifies
4

Similar Publications

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.

Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.

View Article and Find Full Text PDF

Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.

View Article and Find Full Text PDF

Inbred lines of , a wild relative of cultivated watermelon, are widely used as rootstocks to control soil-borne diseases for watermelon ( ) production. The most commonly used rootstock, 'Carolina strongback' (Syngenta, Basel, Switzerland) flowers weeks later than commercial watermelon cultivars, which delays the onset of female flowering (DFF) of the scion, leading to an undesirable delay in fruit maturity and harvesting. Understanding the genetics of DFF in a population will facilitate the development of rootstocks with the early flowering habits preferred for commercial production.

View Article and Find Full Text PDF

Maize (Zea mays L.) is a globally significant crop, with its kernel sugar content playing a crucial role in determining nutritional quality and industrial applications. This study aimed to elucidate the genetic mechanisms underlying sugar-related traits in maize kernels through genome-wide association studies.

View Article and Find Full Text PDF