Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of T-T dual-mode contrast agents is expected to improve cancer diagnostic capabilities in response to the limitation of traditional single-mode magnetic resonance imaging (MRI) contrast agents. In this study, a pH-responsive dual-mode MRI nanoprobe, FeO@MnS-transferrin (FMT), is prepared with the objective of augmenting tumor visualization and chemodynamic therapy (CDT). FMT achieved precise tumor targeting by binding to transferrin receptors on cancer cells via the transferrin molecules on their surface. FMT underwent pH-responsive decomposition in the acidic tumor microenvironment, releasing FeO and Mn. This decomposition increased the spatial separation between FeO and Mn, attenuating the mutual magnetic shielding effect and activating dual-mode MRI function. Moreover, FMT released Mn and hydrogen sulfide (HS). Mn triggered a Fenton-like reaction, generating reactive oxygen species that induced cytotoxicity through CDT. Concurrently, HS inhibited catalase activity, providing additional substrates for the Fenton-like reaction, thereby amplifying CDT in a cascading manner. This synergistic mechanism amplified the cytotoxicity of CDT, enhancing the efficacy of tumor treatment and metastasis inhibition. Therefore, FMT demonstrated significant promise for enhancing both the precision of tumor imaging and the efficacy of treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202500690DOI Listing

Publication Analysis

Top Keywords

metastasis inhibition
8
t-t dual-mode
8
magnetic resonance
8
contrast agents
8
dual-mode mri
8
fenton-like reaction
8
cytotoxicity cdt
8
tumor
6
fmt
5
transferrin-targeted nanoarchitectonics
4

Similar Publications

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF

Cancer-associated fibroblasts as a potential therapeutic target for thyroid cancers.

Int J Surg

September 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.

Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.

View Article and Find Full Text PDF

Background: Breast cancer (BRCA) is the most prevalent cancer in women, with triple-negative breast cancer (TNBC) accounting for 15-20% of cases. TNBC is associated with higher rates of metastasis, recurrence, and poorer prognosis, underscoring the urgent need for new diagnostic and therapeutic strategies.

Methods: In this study, multiple public online platform, including UCSC Genome, UALCAN, Kaplan Meier plotter, DepMap and Single Cell Portal were used to detect the expression of EPHA2 in TNBC.

View Article and Find Full Text PDF

Hypoxia promotes pancreatic adenocarcinoma progression by stabilizing ID1 via TRIM21 suppression.

Front Oncol

August 2025

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.

Introduction: Pancreatic adenocarcinoma (PAAD) is a highly aggressive malignancy characterized by a profoundly hypoxic tumor microenvironment, which fosters tumor progression and confers resistance to therapy The oncogenic regulator ID1has been implicated in PAAD malignancy, however, the mechanisms underlying hypoxia-induced stabilization of ID1 and the role of ubiquitin-mediated degradation remain poorly understood. Elucidating these pathways is essential for identifying novel therapeutic targets for PAAD.

Methods: In this study, we examined ID1 expression in PAAD tissues and cell lines using publicly available databases and in vitro models.

View Article and Find Full Text PDF