98%
921
2 minutes
20
Unlabelled: Drugs targeting mutant BRAF and MEK oncogenes are effective in melanoma, even though resistance rapidly develops. This complex picture includes acquired intrinsic tumor and tumor microenvironmental-mediated mechanisms. Here we show that melanoma cells resistant to BRAF inhibitors (BRAFi) overexpress the rate-limiting enzymes involved in nicotinamide (NAM) metabolism nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide N-methyltransferase (NNMT). Remarkably, these cells release NAMPT and NNMT both in the free-form or loaded into extracellular vesicles (EVs). NAMPT is emerging as a key mediator of resistance to BRAFi in melanoma, primarily due to its established role in NAD biosynthesis. Although previously identified as a soluble extracellular factor in this tumor, its presence within EVs released by melanoma cells has not been reported until now, highlighting a previously unrecognized mechanism through which NAMPT may influence the tumor microenvironment (TME). NNMT was revealed to increase in melanoma lesions compared to benign nevi. Here, we report for the first time its overexpression in resistant melanoma cell lines at intracellular and extracellular levels (secreted both as a soluble factor and into EVs). NNMT expression is increased in BRAF-mutated melanoma patients, suggesting a link between its upregulation and the BRAF oncogenic signaling. Moreover, NNMT levels positively correlate with gene signatures associated with pro-inflammatory signaling, immune cell migration, and chemokine-mediated pathways. NNMT pharmacological inhibition and genetic silencing significantly reduce resistant melanoma cell growth. In addition, we found that BRAFi-resistant cells are more sensitive to NNMT inhibition, highlighting a trait of vulnerability of BRAFi-resistant melanomas. Lastly, we proposed for the first time a tetrameric NNMT:TLR4 binding model offering a plausible structural and mechanistic basis for their association. Our functional results indicated that exogenous NNMT treatment is able to trigger NF-κB pathway, one of the main TLR4-dependent signaling, sharing this cytokine-like properties with NAMPT, and opening a future deeper exploration of its functional role in the extracellular space. Overall, the identification of NAMPT and, surprisingly also NNMT, included in EVs and abundantly released from resistant melanoma cells supports the impact of these moonlighting proteins involved in nicotinamide metabolism as mediators of BRAF/MEK inhibitors resistance with tumor intrinsic and potentially tumor microenvironment-mediated mechanisms. Interfering with nicotinamide metabolism could be a valid strategy to counteract drug resistance acting on the multifactorial tumor-host interactions.
Supplementary Information: The online version contains supplementary material available at 10.1186/s12964-025-02361-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278642 | PMC |
http://dx.doi.org/10.1186/s12964-025-02361-2 | DOI Listing |
Cancer Med
September 2025
Department of Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Background: Melanoma is one of the most immunogenic malignancies, yet resistance to immune checkpoint inhibitors (ICIs) remains a major obstacle to durable therapeutic success. Emerging evidence indicates that aging-related processes, including cellular senescence and immunosenescence, can reshape the tumor microenvironment (TME) to favor immune evasion and disease progression. Senescent melanoma and stromal cells secrete a senescence-associated secretory phenotype (SASP) that alters immune cell recruitment and function, while immunosenescence leads to diminished cytotoxic responses and the accumulation of dysfunctional or suppressive immune subsets.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli
Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.
View Article and Find Full Text PDFBiomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFNat Prod Res
September 2025
Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China.
Chemical investigations of the -butanol extract of the roots of were carried out using column chromatography, flash, semi-preparative HPLC, and chiral HPLC. Five unidentified compounds, including two prenylated coumarin glucosides, two prenylated furanocoumarin glucosides, and a benzofuran glucoside, together with twelve known compounds, were isolated from the -butanol fraction of extract. The structures of these compounds were identified by HRMS, NMR, UV, ECD in combination with quantum chemical calculations, and comparison with the literature.
View Article and Find Full Text PDF