A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cellular Adaptation to Mechanical Stress Emerges via Cell Shrinkage Triggered by Nonlinear Calcium Elevation. | LitMetric

Cellular Adaptation to Mechanical Stress Emerges via Cell Shrinkage Triggered by Nonlinear Calcium Elevation.

Adv Sci (Weinh)

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organisms constantly encounter unpredictable environmental perturbations, necessitating adaptation to maintain homeostasis. However, the fundamental principles by which organisms identify specific cues and transition to an adaptive state remain unclear. Here, using a mouse mechanical ventilation model and a cell stretch model, it is found that the cellular adaptation to mechanical stress can be induced by applying low amplitude stretches to cells, and demonstrate that the adaptation emerges once a defined stretch threshold is reached. This adaptive state is marked by transient cell shrinkage and reduced membrane tension. Mechanistically, guided by a mathematical model of intracellular Ca dynamics, it is found that when stretch reaches a critical amplitude, it induces Ca-dependent positive feedback, leading to nonlinear Ca elevation. This activates scramblase Anoctamin-6, promoting extracellular vesicle-mediated membrane cholesterol efflux. The reduction in membrane cholesterol subsequently activates volume-regulated anion channels, leading to cell shrinkage and the establishment of mechanical adaptation. These findings reveal a threshold-dependent mechanism for mechanical adaptation emergence, and propose a promising strategy to develop targeted interventions in mechanical stress-related disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202503659DOI Listing

Publication Analysis

Top Keywords

cell shrinkage
12
cellular adaptation
8
adaptation mechanical
8
mechanical stress
8
adaptive state
8
membrane cholesterol
8
mechanical adaptation
8
mechanical
6
adaptation
5
stress emerges
4

Similar Publications