Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Organisms constantly encounter unpredictable environmental perturbations, necessitating adaptation to maintain homeostasis. However, the fundamental principles by which organisms identify specific cues and transition to an adaptive state remain unclear. Here, using a mouse mechanical ventilation model and a cell stretch model, it is found that the cellular adaptation to mechanical stress can be induced by applying low amplitude stretches to cells, and demonstrate that the adaptation emerges once a defined stretch threshold is reached. This adaptive state is marked by transient cell shrinkage and reduced membrane tension. Mechanistically, guided by a mathematical model of intracellular Ca dynamics, it is found that when stretch reaches a critical amplitude, it induces Ca-dependent positive feedback, leading to nonlinear Ca elevation. This activates scramblase Anoctamin-6, promoting extracellular vesicle-mediated membrane cholesterol efflux. The reduction in membrane cholesterol subsequently activates volume-regulated anion channels, leading to cell shrinkage and the establishment of mechanical adaptation. These findings reveal a threshold-dependent mechanism for mechanical adaptation emergence, and propose a promising strategy to develop targeted interventions in mechanical stress-related disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202503659 | DOI Listing |