Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A pervasive dilemma in brain-wide association studies (BWAS) is whether to prioritize functional magnetic resonance imaging (fMRI) scan time or sample size. We derive a theoretical model showing that individual-level phenotypic prediction accuracy increases with sample size and total scan duration (sample size × scan time per participant). The model explains empirical prediction accuracies well across 76 phenotypes from nine resting-fMRI and task-fMRI datasets (R = 0.89), spanning diverse scanners, acquisitions, racial groups, disorders and ages. For scans of ≤20 min, accuracy increases linearly with the logarithm of the total scan duration, suggesting that sample size and scan time are initially interchangeable. However, sample size is ultimately more important. Nevertheless, when accounting for the overhead costs of each participant (such as recruitment), longer scans can be substantially cheaper than larger sample size for improving prediction performance. To achieve high prediction performance, 10 min scans are cost inefficient. In most scenarios, the optimal scan time is at least 20 min. On average, 30 min scans are the most cost-effective, yielding 22% savings over 10 min scans. Overshooting the optimal scan time is cheaper than undershooting it, so we recommend a scan time of at least 30 min. Compared with resting-state whole-brain BWAS, the most cost-effective scan time is shorter for task-fMRI and longer for subcortical-to-whole-brain BWAS. In contrast to standard power calculations, our results suggest that jointly optimizing sample size and scan time can boost prediction accuracy while cutting costs. Our empirical reference is available online for future study design ( https://thomasyeolab.github.io/OptimalScanTimeCalculator/index.html ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367542PMC
http://dx.doi.org/10.1038/s41586-025-09250-1DOI Listing

Publication Analysis

Top Keywords

scan time
28
sample size
24
scan
9
longer scans
8
boost prediction
8
brain-wide association
8
association studies
8
time
8
prediction accuracy
8
accuracy increases
8

Similar Publications

Giant and Tunable Optical Nonlinearity via Electrochemical Control of the Tellurium-Electrolyte Interface.

Nano Lett

September 2025

Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.

The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.

View Article and Find Full Text PDF

Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).

View Article and Find Full Text PDF

Abdominal simultaneous 3D water T and T mapping using a free-breathing Cartesian acquisition with spiral profile ordering.

Magn Reson Med

September 2025

Institute for Diagnostic and Interventional Radiology, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany.

Purpose: To develop a method for abdominal simultaneous 3D water ( ) and ( ) mapping with isotropic resolution using a free-breathing Cartesian acquisition with spiral profile ordering (CASPR) at 3 T.

Methods: The proposed data acquisition combines a Look-Locker scheme with the modified BIR-4 adiabatic preparation pulse for simultaneous and mapping. CASPR is employed for efficient and flexible k-space sampling at isotropic resolution during free breathing.

View Article and Find Full Text PDF

The distribution of tau pathology in Alzheimer's disease (AD) shows remarkable inter-individual heterogeneity, including hemispheric asymmetry. However, the factors driving this asymmetry remain poorly understood. Here we explore whether tau asymmetry is linked to i) reduced inter-hemispheric brain connectivity (potentially restricting tau spread), or ii) asymmetry in amyloid-beta (Aβ) distribution (indicating greater hemisphere-specific vulnerability to AD pathology).

View Article and Find Full Text PDF

Objective: This study presents a comprehensive analysis of electrochemical skin conductance (ESC) values collected from over 1.9 million measurements using Withings Body Scan and Body Comp scales. It aimed at establishing descriptive values for ESC while correcting for the influence of age, sex, and circadian and seasonal variations on sudomotor function.

View Article and Find Full Text PDF