Imaging Neurosci (Camb)
January 2025
The characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development. Precise characterization of systems organization during periods of high plasticity is likely to be essential for discoveries promoting lifelong health.
View Article and Find Full Text PDFImaging Neurosci (Camb)
November 2024
In functional MRI (fMRI), dynamic functional connectivity (dFC) typically refers to fluctuations in measured functional connectivity on a time scale of seconds. This perspective piece focuses on challenges in the measurement and interpretation of functional connectivity dynamics. Sampling error, physiological artifacts, arousal level, and task state all contribute to variability in observed functional connectivity.
View Article and Find Full Text PDFCortical areas are a fundamental organizational property of the brain, but their development in humans is not well understood. Key unanswered questions include whether cortical areas are fully established near birth, the extent of individual variation in the arrangement of cortical areas, and whether any such individual variation in cortical area location is greater in later-developing association areas as compared to earlier-developing sensorimotor areas. To address these questions, we used functional MRI to collect precision functional mapping (PFM) data in eight individual neonates (mean 42.
View Article and Find Full Text PDFA pervasive dilemma in brain-wide association studies (BWAS) is whether to prioritize functional magnetic resonance imaging (fMRI) scan time or sample size. We derive a theoretical model showing that individual-level phenotypic prediction accuracy increases with sample size and total scan duration (sample size × scan time per participant). The model explains empirical prediction accuracies well across 76 phenotypes from nine resting-fMRI and task-fMRI datasets (R = 0.
View Article and Find Full Text PDFCerebral glucose metabolism (CMRGlc) systematically decreases with advancing age. We sought to identify correlates of decreased CMRGlc in the spectral properties of fMRI signals imaged in the task-free state. Lifespan resting-state fMRI data acquired in 455 healthy adults (ages 18-87 years) and cerebral metabolic data acquired in a separate cohort of 94 healthy adults (ages 25-45 years, 65-85 years) were analyzed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2025
The action-mode network (AMN) is a canonical functional brain network first identified using resting-state functional connectivity (RSFC). Based on animal and human data, we have proposed that AMN supports the brain's action mode by controlling functions required for successful goal-directed behavior. However, task fMRI averaged across groups has associated AMN regions with a variety of behaviors, contributing to uncertainty about AMN function.
View Article and Find Full Text PDFPrescription stimulants such as methylphenidate are being used by an increasing portion of the population, primarily children. These potent norepinephrine and dopamine reuptake inhibitors promote wakefulness, suppress appetite, enhance physical performance, and are purported to increase attentional abilities. Prior functional magnetic resonance imaging (fMRI) studies have yielded conflicting results about the effects of stimulants on the brain's attention, action/motor, and salience regions that are difficult to reconcile with their proposed attentional effects.
View Article and Find Full Text PDFPsilocybin (PSIL) is a psychedelic drug and a promising experimental therapeutic for many psychiatric conditions. Precision functional mapping (PFM) combines densely repeated resting state fMRI sampling and individual-specific network mapping to improve signal-to-noise ratio (SNR) and effect size in brain imaging research. We present a randomized cross-over study in which PFM was used to characterize acute and persistent effects of psilocybin or methylphenidate (MTP) on brain networks.
View Article and Find Full Text PDFBrain development during adolescence and early adulthood coincides with shifts in emotion regulation and sleep. Despite this, few existing datasets simultaneously characterize affective dynamics, sleep variation, and multimodal measures of brain development. Here, we describe the study protocol and initial release (n = 10) of an open data resource of neuroimaging paired with densely sampled behavioral measures in adolescents and young adults.
View Article and Find Full Text PDFThe cerebral cortex consists of distinct areas that develop through intrinsic embryonic patterning and postnatal experiences. Accurate parcellation of these areas in neuroimaging studies improves statistical power and cross-study comparability. Given significant brain changes in volume, microstructure, and connectivity during early life, we hypothesized that cortical areas in 1- to 3-year-olds would differ markedly from neonates and increasingly resemble adult patterns as development progresses.
View Article and Find Full Text PDFSubcortical plasticity has mainly been studied using invasive electrophysiology in animals. Here, we leverage precision functional mapping (PFM) to study motor plasticity in the human subcortex during 2 weeks of upper-extremity immobilization with daily resting-state and motor task fMRI. We found previously that, in the cortex, limb disuse drastically impacts disused primary motor cortex functional connectivity (FC) and is associated with spontaneous fMRI pulses.
View Article and Find Full Text PDFThe red nucleus, a large brainstem structure, coordinates limb movement for locomotion in quadrupedal animals. In humans, its pattern of anatomical connectivity differs from that of quadrupeds, suggesting a different purpose. Here, we apply our most advanced resting-state functional connectivity based precision functional mapping in highly sampled individuals (n = 5), resting-state functional connectivity in large group-averaged datasets (combined n ~ 45,000), and task based analysis of reward, motor, and action related contrasts from group-averaged datasets (n > 1000) and meta-analyses (n > 14,000 studies) to precisely examine red nucleus function.
View Article and Find Full Text PDFDev Cogn Neurosci
June 2025
The human cerebral cortex contains groups of areas that support sensory, motor, cognitive, and affective functions, often categorized into functional networks. These networks show stronger internal and weaker external functional connectivity (FC), with FC profiles more similar within the same network. Previous studies have shown these networks develop from nascent forms before birth to their mature, adult-like structures in childhood.
View Article and Find Full Text PDFCerebral glucose metabolism (CMRGlc) systematically decreases with advancing age. We sought to identify correlates of decreased CMRGlc in the spectral properties of fMRI signals imaged in the task-free state. We analyzed lifespan resting-state fMRI data acquired in 455 healthy adults (ages 18-87 years) and cerebral metabolic data acquired in a separate cohort of 94 healthy adults (ages 25-45 years, 65-85 years).
View Article and Find Full Text PDFUnderstanding sex differences in the adolescent brain is crucial, as these differences are linked to neurological and psychiatric conditions that vary between males and females. Predicting sex from adolescent brain data may offer valuable insights into how these variations shape neurodevelopment. Recently, attention has shifted toward exploring socially-identified gender, distinct from sex assigned at birth, recognizing its additional explanatory power.
View Article and Find Full Text PDFThe cerebral cortex consists of distinct areas that develop through intrinsic embryonic patterning and postnatal experiences. Accurate parcellation of these areas in neuroimaging studies improves statistical power and cross-study comparability. Given significant brain changes in volume, microstructure, and connectivity during early life, we hypothesized that cortical areas in 1- to 3-year-olds would differ markedly from neonates and increasingly resemble adult patterns as development progresses.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
November 2024
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far.
View Article and Find Full Text PDFCereb Cortex
September 2024
Structural connectivity (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to SC may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling.
View Article and Find Full Text PDFNeuropsychopharmacology
November 2024
Studies linking mental health with brain function in cross-sectional population-based association studies have historically relied on small, underpowered samples. Given the small effect sizes typical of such brain-wide associations, studies require samples into the thousands to achieve the statistical power necessary for replicability. Here, we detail how small sample sizes have hampered replicability and provide sample size targets given established association strength benchmarks.
View Article and Find Full Text PDFNeuropsychopharmacology
November 2024
Psychiatric neuroimaging faces challenges to rigour and reproducibility that prompt reconsideration of the relative strengths and limitations of study designs. Owing to high resource demands and varying inferential goals, current designs differentially emphasise sample size, measurement breadth, and longitudinal assessments. In this overview and perspective, we provide a guide to the current landscape of psychiatric neuroimaging study designs with respect to this balance of scientific goals and resource constraints.
View Article and Find Full Text PDFThe human cerebral cortex contains groups of areas that support sensory, motor, cognitive, and affective functions, often categorized into functional networks. These networks show stronger internal and weaker external functional connectivity (FC), with FC profiles more similar within the same network. Previous studies have shown these networks develop from nascent forms before birth to their mature, adult-like structures in childhood.
View Article and Find Full Text PDFNature
August 2024
A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics.
View Article and Find Full Text PDFThe cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data.
View Article and Find Full Text PDFThe red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907).
View Article and Find Full Text PDF