98%
921
2 minutes
20
The emergence of myelin marks an evolutionary leap from jawless to jawed vertebrates. Although myelin's role in promoting rapid neural signal transmission and brain complexity is known, its neuroprotective mechanisms in complex signal transmission remain unclear. This study identifies the critical FoxO gene family member, foxo1a, as essential to the evolution of jawed vertebrates by comparing divergence times and gene family heterogeneity between jawless and jawed vertebrates. We found that foxo1a is located in zebrafish oligodendrocytes and myelin, playing a key antioxidant protective role. Specifically, we found that knocking out the foxo1a gene leads to abnormal myelin development in the central nervous system of zebrafish, a reduction in oligodendrocytes, astrocytes, and myelin markers, and induces freezing behavior. Further research revealed that this is related to oxidative stress responses and ferroptosis in the central nervous system of zebrafish following the deficiency of the foxo1a gene. Mechanistically, we discovered that foxo1a is involved in regulating oxidative stress responses and iron homeostasis in the central nervous system by directly regulating the promoter activity of the slc7a11 gene. In terms of application, we found that exogenous supplementation of foxo1a can exert antioxidant protective effects in a copper sulfate-induced myelin damage model. More importantly, we found a parallelism of the foxo1a-slc7a11 axis in both zebrafish and human cells, suggesting that the foxo1a-slc7a11 axis might be an evolutionarily conserved neural defense strategy in jawed vertebrates. In conclusion, our study elucidates the critical role of foxo1a in maintaining antioxidant homeostasis in the central nervous system and provides new insights into the adaptive evolution of the central nervous system in jawed vertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283898 | PMC |
http://dx.doi.org/10.1016/j.redox.2025.103763 | DOI Listing |
Elife
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
IgM emerged in jawed vertebrates 500 Mya and remains the most evolutionarily conserved antibody class. However, despite extensive studies on IgM as an ancient antiviral weapon in warm-blooded vertebrates, its role and mechanisms in combating viral infections in early vertebrates remain poorly understood. Here, significant virus-specific sIgM titers are generated in the serum and gut mucus of a teleost fish (largemouth bass) that survive infection, and fish lacking sIgM were more susceptible to viral infection.
View Article and Find Full Text PDFR Soc Open Sci
September 2025
Department of Understanding Evolution, Naturalis Biodiversity Center, Leiden, The Netherlands.
The origin of jaws and teeth represents one of the most formative episodes in our own evolutionary history. However, this event is poorly understood because of a lack of detailed knowledge of key lineages, including the 'acanthothoracid' placoderms, which were among the earliest jawed vertebrates. Here, we describe sp.
View Article and Find Full Text PDFNatl Sci Rev
July 2025
Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China.
[This corrects the article DOI: 10.1093/nsr/nwae444.].
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Palaeontology, Natural History Museum, London, UK.
Chondrichthyans (cartilaginous fishes) have lost the cellular bone characteristic of other jawed vertebrate skeletons. However, we identify cellular bone-like tissue in modified scales with enlarged bases, called 'bucklers' and 'thorns', which are distinctive for one group of extant batoids (rays). As placoid scales, they possess spines of orthodentine and osteodentine, but a unique basal structure.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Biological Sciences, Columbia University, New York, NY, USA.
In the developing cerebral cortex, Cajal Retzius (CR) cells are early-born neurons that orchestrate the development of mammalian-specific cortical features. However, this cell type has not been conclusively identified in non-mammalian species. Here we studied neurons expressing , a transcription factor specifically expressed in most mammalian CR cells.
View Article and Find Full Text PDF