Publications by authors named "Prabesh Bhattarai"

In the developing cerebral cortex, Cajal Retzius (CR) cells are early-born neurons that orchestrate the development of mammalian-specific cortical features. However, this cell type has not been conclusively identified in non-mammalian species. Here we studied neurons expressing , a transcription factor specifically expressed in most mammalian CR cells.

View Article and Find Full Text PDF

The apolipoprotein E ε4 allele ( ) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), yet its molecular impact on cerebrovascular biology remains inconclusive, particularly in underrepresented populations with elevated vascular burden. Individuals from Hispanic ancestry experience disproportionately high rates of cerebrovascular pathology, offering a unique opportunity to investigate the mechanisms of cerebrovascular pathology in AD. Here, we performed single-nucleus RNA sequencing (snSeq) on 413,175 nuclei from 52 postmortem Hispanic brains to determine -associated cell type specific transcriptomic changes in a population with elevated cerebrovascular risk.

View Article and Find Full Text PDF

Unlabelled: Blood-brain barrier (BBB) dysfunction is a key feature of Alzheimer's disease (AD), particularly in individuals carrying the allele. This dysfunction worsens neuroinflammation and hinders the removal of toxic proteins, such as amyloid-beta (Aβ42), from the brain. In post-mortem brain tissues and in animal models, we previously reported that fibronectin accumulates at the BBB predominantly in carriers.

View Article and Find Full Text PDF

Microproteins, short functional peptides encoded by small genes, are emerging as critical regulators of cellular processes, yet their roles in mitochondrial function and neurodegeneration remain underexplored. In this study, we identify NCBP2-AS2 as an evolutionarily conserved mitochondrial microprotein with significant roles in energy metabolism and neurogenesis. Using a combination of cellular and molecular approaches, including CRISPR/Cas9 knockout models, stoichiometric co- immunoprecipitation, and advanced imaging techniques, we demonstrate that NCBP2-AS2 localizes to the inner mitochondrial space and interacts with translocase of the inner membrane (TIM) chaperones.

View Article and Find Full Text PDF
Article Synopsis
  • The heart's proper functioning depends on both the central nervous system and its own local neuronal networks, known as the intracardiac nervous system (IcNS), which has not been thoroughly studied.
  • This research introduces a detailed classification of the IcNS by using advanced techniques like single-cell RNA sequencing, revealing a surprising variety of neuronal types within it.
  • Notably, some identified neurons share characteristics with pacemaker neurons from the central nervous system, highlighting the complexity of the IcNS and its crucial role in maintaining heart rhythm, paving the way for future research on cardiac-related issues.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic variants in the ABCA7 gene are linked to a higher risk of Alzheimer's disease (AD), but the exact function of ABCA7 in AD development remains uncertain.* -
  • Researchers created a zebrafish model lacking the abca7 gene, revealing that ABCA7 is essential for the expression of neuropeptide Y (NPY) and other neurotrophic factors vital for brain health.* -
  • Findings suggest that decreased NPY due to impaired ABCA7 function contributes to synaptic issues and a higher risk of AD, with clinical data showing a correlation between NPY levels and disease progression.*
View Article and Find Full Text PDF

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes.

View Article and Find Full Text PDF

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology.

View Article and Find Full Text PDF

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes .

View Article and Find Full Text PDF

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the allele. Elderly cognitively healthy individuals with also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of ; however, these mechanisms are unknown. We hypothesized that carriers without dementia might carry genetic variations that could protect them from developing mediated AD pathology.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a complicated condition linked to cognitive decline and memory loss, with genetic variations playing a significant role in its development, although the exact mechanisms are still unclear.
  • Researchers developed a knockout zebrafish model of an established AD-risk gene using CRISPR/Cas9, which exhibited decreased astroglial growth, synaptic density, and microglial levels when exposed to amyloid beta 42 (Aβ42).
  • Findings from single-cell transcriptomics indicated that neuropeptide Y (NPY) signaling is crucial for neuronal and glial interaction, while clinical data in humans showed a correlation between reduced gene expression and advanced AD stages, along with genetic variations linked to the disease.
View Article and Find Full Text PDF
Article Synopsis
  • Neurogenesis, which helps the brain stay resilient, decreases in Alzheimer's disease (AD), leading to reactive astrocytes that hinder neurogenesis; restoring neurogenesis could potentially counteract neurodegenerative effects.
  • Researchers used a mouse model to explore the role of Nerve growth factor receptor (Ngfr) in promoting neurogenesis in astrocytes during AD, finding that Ngfr reduces a marker (Lcn2) associated with reactive astrocytes, thereby enhancing neurogenic outcomes.
  • The study indicates that by boosting Ngfr expression, it's possible to decrease amyloid plaques and improve neurogenesis, suggesting that targeting astrocytes to promote their neurogenic potential could offer new therapeutic strategies for Alzheimer's disease.
View Article and Find Full Text PDF

Identifying new chemical structures against protein targets of interest represents one of the major challenges in drug discovery. As the major experimental method, high throughput screenings are performed with existing chemical libraries, thus restricting its capability to explore high molecular diversity. Herein, we report the use of high throughput array synthesis technology, in combination with growth algorithm, to discover binders for proinflammatory cytokine TNF-α.

View Article and Find Full Text PDF

The success rate of novel drug candidates in clinical trials relies on the safety and efficacy data of the preclinical studies. Although cell-based assays are widely used, the complexity of an system to mimic human disease pathophysiology is essential. Despite the wide usage of rodent models for preclinical drug discovery, increasing the repertoire of animal models that allow the investigation of various pathological mechanisms with a unique operational strength for drug discovery is required.

View Article and Find Full Text PDF

Drug development efforts that focused on single targets failed to provide effective treatment for Alzheimer's disease (AD). Therefore, we designed cholinesterase inhibition (ChEI)-based multi-target-directed ligands (MTDLs) to simultaneously target AD-related receptors. We built a library of 70 compounds, sequentially screened for ChEI, and determined σR, σR, NMDAR-GluN2B binding affinities, and P2X7R antagonistic activities.

View Article and Find Full Text PDF

Neurogenesis is significantly reduced in Alzheimer's disease (AD) and is a potential therapeutic target. Contrary to humans, a zebrafish can regenerate its diseased brain, and thus is ideal for studying neurogenesis. To compare the AD-related molecular pathways between humans and zebrafish, we compared single cell or nuclear transcriptomic data from a zebrafish amyloid toxicity model and its controls (N = 12) with the datasets of two human adult brains (N = 10 and N = 48 (Microglia)), and one fetal brain (N = 10).

View Article and Find Full Text PDF

Alzheimer's disease (AD) has been associated with cardiovascular and cerebrovascular risk factors (CVRFs) during middle age and later and is frequently accompanied by cerebrovascular pathology at death. An interaction between CVRFs and genetic variants might explain the pathogenesis. Genome-wide, gene by CVRF interaction analyses for AD, in 6568 patients and 8101 controls identified FMNL2 (p = 6.

View Article and Find Full Text PDF

Neurogenesis decreases in Alzheimer's disease (AD) patients, suggesting that restoring the normal neurogenic response could be a disease modifying intervention. To study the mechanisms of pathology-induced neuro-regeneration in vertebrate brains, zebrafish is an excellent model due to its extensive neural regeneration capacity. Here, we report that Kynurenic acid (KYNA), a metabolite of the amino acid tryptophan, negatively regulates neural stem cell (NSC) plasticity in adult zebrafish brain through its receptor, aryl hydrocarbon receptor 2 (Ahr2).

View Article and Find Full Text PDF

Single-cell sequencing (sc-Seq) is a powerful tool to investigate the molecular signatures of cell types in a complex mixture of cells. A critical step in sc-Seq is preparing a single-cell suspension with a high number of viable cells. Here, we show how to dissect zebrafish telencephalon and how to dissociate it into a single-cell suspension.

View Article and Find Full Text PDF

Recent findings suggest that reduced neurogenesis could be one of the underlying reasons for the exacerbated neuropathology in humans, thus restoring the neural stem cell proliferation and neurogenesis could help to circumvent some pathological aspects of Alzheimer's disease. We recently identified Interleukin-4/STAT6 signaling as a neuron-glia crosstalk mechanism that enables glial proliferation and neurogenesis in adult zebrafish brain and 3D cultures of human astroglia, which manifest neurogenic properties. In this study, by using single cell sequencing in the APP/PS1dE9 mouse model of AD, we found that IL4 receptor () is not expressed in mouse astroglia and IL4 signaling is not active in these cells.

View Article and Find Full Text PDF

It was recently suggested that supplying the brain with new neurons could counteract Alzheimer's disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains.

View Article and Find Full Text PDF

Alzheimer's disease cannot be cured as of yet. Our current understanding on the causes of Alzheimer's disease is limited. To develop treatments, experimental models that represent a particular cellular phase of the disease and more rigorous scrutiny of the cellular pathological mechanisms are crucial.

View Article and Find Full Text PDF

The neural stem cell (NSC) reservoir can be harnessed for stem cell-based regenerative therapies. Zebrafish remarkably regenerate their brain by inducing NSC plasticity in a Amyloid-β-42 (Aβ42)-induced experimental Alzheimer's disease (AD) model. Interleukin-4 (IL-4) is also critical for AD-induced NSC proliferation.

View Article and Find Full Text PDF

Microglia, the parenchymal immune cells of the central nervous system, orchestrate neuroinflammation in response to infection or damage, and promote tissue repair. However, aberrant microglial responses are integral to neurodegenerative diseases and critically contribute to disease progression. Thus, it is important to elucidate how microglia - mediated neuroinflammation is regulated by endogenous factors.

View Article and Find Full Text PDF