98%
921
2 minutes
20
Neurogenesis decreases in Alzheimer's disease (AD) patients, suggesting that restoring the normal neurogenic response could be a disease modifying intervention. To study the mechanisms of pathology-induced neuro-regeneration in vertebrate brains, zebrafish is an excellent model due to its extensive neural regeneration capacity. Here, we report that Kynurenic acid (KYNA), a metabolite of the amino acid tryptophan, negatively regulates neural stem cell (NSC) plasticity in adult zebrafish brain through its receptor, aryl hydrocarbon receptor 2 (Ahr2). The production of KYNA is suppressed after amyloid-toxicity through reduction of the levels of Kynurenine amino transferase 2 (KAT2), the key enzyme producing KYNA. NSC proliferation is enhanced by an antagonist for Ahr2 and is reduced with Ahr2 agonists or KYNA. A subset of Ahr2-expressing zebrafish NSCs do not express other regulatory receptors such as or , indicating that -positive NSCs constitute a new subset of neural progenitors that are responsive to amyloid-toxicity. By performing transcriptome-wide association studies (TWAS) in three late onset Alzheimer disease (LOAD) brain autopsy cohorts, we also found that several genes that are components of KYNA metabolism or AHR signaling are differentially expressed in LOAD, suggesting a strong link between KYNA/Ahr2 signaling axis to neurogenesis in LOAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534484 | PMC |
http://dx.doi.org/10.3390/cells10102748 | DOI Listing |
RNA Biol
September 2025
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea.
Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P. R. China.
Fibrotic scarring remains a critic obstacle to axonal regeneration after spinal cord injury (SCI). Current strategies primarily concentrating on eliminating extracellular matrix (ECM) components neglect their dispensable roles in maintaining tissue integrity. Here, it is reported that the mechanical strength of an integrated hydrogel composed of hyaluronic acid-graft-dopamine and HRR peptide directs fibroblast migration, determining ECM deposition.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).
View Article and Find Full Text PDF