Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ecological niche models (ENMs) and species distribution models (SDMs) are essential tools for investigating the ecological requirements and geographic distributions of species at multiple spatial and temporal scales. While these modelling techniques have been employed across various taxonomic groups to explore ecology, evolution and biogeography, their application to ticks and tick-borne pathogens (TBPs) has yielded valuable-though not yet conclusive-perspectives for understanding epidemiology and pathogen transmission risk. Advances in research on these topics necessitate a review to determine whether there is consistency in the conceptual and methodological implementation of these approaches, as well as to identify needs for improvement and adaptation to more informative alternatives. Here, we aim to review the state of the art in the use of these concepts and tools in the study of tick species and TBPs worldwide to provide a clear understanding of their theoretical and methodological foundations, study topics, involved species, variables, geographic resolutions, applications of model outputs and thematic evolution. We conducted a formal literature review of 158 publications in the period from 1997 to May 2024, along with bibliometric and scientometric analyses. Results indicate that the main topic of study resides in the prediction of current and future potential geographic distribution, and most of the work has been carried out only for nine genera of ticks, with major focus on species belonging to the family Ixodidae and those affecting human health. Borrelia burgdorferi Johnson et al. (Spirochaetales: Borreliaceae) is the most explored pathogen. Studies have mostly used bioclimatic variables, but some studies also incorporate topographic variables from local to global scales, with resolutions ranging from 30 m to 80 km. Although ENM and SDM in ticks and TBPs have been routinely used, very few have been validated in the field, and their projections are not used in epidemiological monitoring. Over 60% of the studies do not report sufficient methodological information for replication. We also detected imprecise usage of the terms ENM and SDM, which are often used interchangeably. This lack of conceptual clarity impedes the adequate treatment of both ecological niches and geographic distributions, hindering advancement in this research field worldwide. We recommend including species of the family Argasidae in future studies to analyse their ecological requirements and potential distributions. These species have been poorly studied despite being vectors of pathogens causing diseases with medical and veterinary importance (e.g., relapsing fever and spirochetosis). Lastly, we identify key areas for improvement-from biogeographical knowledge gaps to the use of modern sampling methods, algorithms and hypotheses-that would enhance the application of these concepts and modelling techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mve.12820DOI Listing

Publication Analysis

Top Keywords

current future
8
species
8
species distribution
8
ecological niche
8
ticks tick-borne
8
tick-borne pathogens
8
ecological requirements
8
geographic distributions
8
distributions species
8
modelling techniques
8

Similar Publications

Recent advances in presodiation strategies for hard carbon anodes in sodium-ion batteries.

Chem Commun (Camb)

September 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.

View Article and Find Full Text PDF

Objective: From October 18-20, 2022, the National Institutes of Health held a workshop to examine the state of the science concerning obesity interventions in adults to promote health equity. The workshop had three objectives: (1) Convene experts from key institutions and the community to identify gaps in knowledge and opportunities to address obesity, (2) generate recommendations for obesity prevention and treatment to achieve health equity, and (3) identify challenges and needs to address obesity prevalence and disparities, and develop a diverse workforce.

Methods: A three-day virtual convening.

View Article and Find Full Text PDF

Background: Transforming Clinical Practice Guideline (CPG) recommendations into computer readable language is a complex and ongoing process that requires significant resources, including time, expertise, and funds. The objective is to provide an extension of the widely used GIN-McMaster Guideline Development Checklist (GDC) and Tool for the development of computable guidelines (CGs).

Methods: Based on an outcome from the Human Centered Design (HCD) workshop hosted by the Guidelines International Network North America (GIN-NA), a team was formed to develop the checklist extension.

View Article and Find Full Text PDF

Molecular imaging in nuclear medicine has been employed extensively in recent years for tumor-targeted diagnosis and treatment that is attributed to its non-invasive property, which enables visualized functional localization. This functionality relies on the development of radionuclide molecular probes designed with the objective of identifying specific targets on the surface of tumors. Epithelial cell adhesion molecules (EpCAM) are considered to be a promising target as an antigenic marker for its widely present and integral to the processes associated with tumor occurrence and progression.

View Article and Find Full Text PDF

Thymol is a major monoterpene compound from plants. Thymol exhibits antifungal, antioxidant, and anti-inflammatory properties. Over the past few years, extensive research has underscored the pivotal role of thymol in delaying postharvest senescence in fruits and vegetables, suppressing fungal growth in meat products, and enhancing the shelf life of meat and processed foods.

View Article and Find Full Text PDF