Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pathologic myopia is a leading cause of visual impairment and blindness. While deep learning-based approaches aid in recognizing pathologic myopia using color fundus photography, they often rely on implicit patterns that lack clinical interpretability. This study aims to diagnose pathologic myopia by identifying clinically significant morphologic patterns, specifically posterior staphyloma and myopic maculopathy, by leveraging ultra-widefield (UWF) images that provide a broad retinal field of view. We curate a large-scale, multi-source UWF myopia dataset called PSMM and introduce RealMNet, an end-to-end lightweight framework designed to identify these challenging patterns. Benefiting from the fast pretraining distillation backbone, RealMNet comprises only 21 million parameters, which facilitates deployment for medical devices. Extensive experiments conducted across three different protocols demonstrate the robustness and generalizability of RealMNet. RealMNet achieves an F1 Score of 0.7970 (95% CI 0.7612-0.8328), mAP of 0.8497 (95% CI 0.8058-0.8937), and AUROC of 0.9745 (95% CI 0.9690-0.9801), showcasing promise in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256625PMC
http://dx.doi.org/10.1038/s41746-025-01849-yDOI Listing

Publication Analysis

Top Keywords

pathologic myopia
16
myopia identifying
8
morphologic patterns
8
myopia
5
diagnosing pathologic
4
identifying morphologic
4
patterns
4
patterns ultra
4
ultra widefield
4
widefield images
4

Similar Publications

Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the focal relationship between choroidal thickness and retinal sensitivity in myopic eyes.

Methods: Participants underwent swept-source optical coherence tomography (SS-OCT) imaging and microperimetry testing. Choroidal thicknesses were obtained by segmenting the SS-OCT scans using a deep-learning approach.

View Article and Find Full Text PDF

Purpose: To compare postoperative vault measurements between horizontal and vertical fixation of the Implantable Collamer Lens (ICL) (KS-AquaPORT; STAAR Surgical) when its size is determined using the KS formula.

Methods: This retrospective study analyzed 2,343 eyes from 1,275 patients who underwent myopic ICL implantation. Pre-operative anterior segment optical coherence tomography (AS-OCT) (CASIA 2; Tomey Corporation) was performed in both horizontal and vertical orientations.

View Article and Find Full Text PDF

[Research progress on pathologic myopic macular atrophy].

Zhonghua Yan Ke Za Zhi

September 2025

Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Ophthalmology&Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Pathological myopia is one of the primary causes of irreversible visual loss in the population. Myopic maculopathy represents a key feature of pathological myopia, among which macular atrophy is the main contributor to severe visual impairment. The specific mechanism underlying the development of macular atrophy remains unclear.

View Article and Find Full Text PDF