98%
921
2 minutes
20
Hydrogels are well-known for their antifriction and lubricating properties, particularly in hydrated environments, where their water-rich polymer networks enable effective friction reduction. However, during the wet-to-dry transition, a critical phase is identified during which the microstructures of a polyacrylamide hydrogel layer undergo volumetric shrinkage, leading to extensive interfacial contact and enhanced intermolecular interactions at solid interfaces. This process leads to a sharp increase in friction and adhesion forces. Sliding friction tests show that under a 2 mN load, the shear force peaked at 115 mN, corresponding to a remarkably high friction coefficient of 57.5. By leveraging this wet-to-dry transition, strong object gripping is successfully achieved across a range of surfaces. Notably, the hydrogel layer exhibits a high adhesion strength of 3.48 MPa on glass and 3.64 MPa on Si substrates. These findings offer new insights into hydrogel active gripping technologies and provide promising implications for soft robotics and adhesive interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202507827 | DOI Listing |
Int J Biol Macromol
September 2025
Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran. Electronic address:
This study aimed to develop an innovative pH-sensitive bio-hydrogel containing curcumin (CUR) and l-tyrosine (Tyr) intercalated layered double hydroxide-modified chitosan (CS)/dialdehyde starch (DAS) (DAS-CS@Tyr-CUR@LDH) to facilitate the controlled release of Tyr and CUR, thereby enhancing their bioavailability and therapeutic effects. The entrapment efficiencies of Tyr and CUR were obtained at 79.31 ± 5.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China. Electronic address:
Due to the poor regeneration ability of cartilage tissue, the design and fabrication of permanent hydrogel cartilage scaffolds with mechanical properties matching is still an urgent challenge. In this study, we propose an "inner swelling-outer restraint" strategy to construct Janus hydrogel for pressure-bearing cartilage replacement, which is inspired by the "Lamina-splendens" structure of cartilage. As a proof of concept, the poly(vinyl alcohol)/carboxymethyl cellulose sodium (PVA/CMCNa) layer is designed to capture more fluid by introducing negatively charged aggregates, while the macromolecular conformation of the PVA/MoS layer can be densified through wet annealing, thereby increasing the liquid permeation resistance of the PVA/CMCNa layer.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China. Electronic address:
Conventional wound dressings primarily focus on biochemical regulation, often neglecting the potential benefits of mechanical cues in tissue regeneration. We report a Janus hydrogel (QPJ hydrogel) that synergistically integrates biochemical modulation with temperature-responsive mechanical contraction for advanced chronic wound management. The hydrogel is constructed from quaternary ammonium chitosan (QCS) and N-isopropylacrylamide (NIPAM), with an outer PNIPAM layer that generates a directional contractile stress >25 kPa at physiological temperature.
View Article and Find Full Text PDFActa Biomater
September 2025
Faculty of medicine and health technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland. Electronic address:
In the eye, the retinal pigment epithelium (RPE) maintains the functionality and welfare of retinal photoreceptors and forms a tight, interlocked structure with photoreceptor outer segments (POSs). The RPE-retina interaction is difficult to recapitulate in vitro, limiting the studies addressing the retinal maintenance functions of the RPE. To overcome this challenge, we constructed a retina-mimicking structure using a soft polyacrylamide hydrogel coated with Matrigel.
View Article and Find Full Text PDF