Bridge Deformation Monitoring Combining 3D Laser Scanning with Multi-Scale Algorithms.

Sensors (Basel)

Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation detection and utilizes least-squares plane fitting for quantitative feature extraction. When applied to the approach span of a cross-river bridge in Hubei Province, China, this method leverages dense point clouds (greater than 500 points per square meter) acquired using a Leica RTC360 scanner. Data preprocessing incorporates curvature-adaptive cascade denoising, achieving over 98% noise removal while retaining more than 95% of structural features, along with octree-based simplification. By extracting multi-level slice features from bridge decks and piers, this method enables the simultaneous analysis of global trends and local deformations. The results revealed significant deformation, with an average settlement of 8.2 mm in the left deck area. The bridge deck exhibited a deformation trend characterized by left and higher right in the vertical direction, while the bridge piers displayed noticeable tilting, particularly with the maximum offset of the rear pier columns reaching 182.2 mm, which exceeded the deformation of the front pier. The bridge deck's micro-settlement error was ±1.2 mm, and the pier inclination error was ±2.8 mm, meeting the Chinese Highway Bridge Maintenance Code (JTG H11-2004) and the American Association of State Highway and Transportation Officials (AASHTO) standards, and the multi-scale algorithm achieved engineering-level accuracy. Utilizing point cloud densities >500 pt/m, the M3C2 algorithm achieved a spatial resolution of 0.5 mm, enabling sub-millimeter full-field analysis for complex scenarios. This method significantly enhances bridge safety monitoring precision, enhances the precision of intelligent systems monitoring, and supports the development of targeted systems as pile foundation reinforcement efforts and as improvements to foundations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252397PMC
http://dx.doi.org/10.3390/s25133869DOI Listing

Publication Analysis

Top Keywords

m3c2 algorithm
12
bridge
8
spatial resolution
8
least-squares plane
8
plane fitting
8
algorithm achieved
8
bridge deformation
4
monitoring
4
deformation monitoring
4
monitoring combining
4

Similar Publications

To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation detection and utilizes least-squares plane fitting for quantitative feature extraction. When applied to the approach span of a cross-river bridge in Hubei Province, China, this method leverages dense point clouds (greater than 500 points per square meter) acquired using a Leica RTC360 scanner.

View Article and Find Full Text PDF

Monitoring reclaimed landfills is essential for ensuring their stability and monitoring the regularity of facility settlement. Insufficient recognition of the magnitude and directions of these changes can lead to serious damage to the body of the landfill (landslides, sinkholes) and, consequently, threaten the environment and the life and health of people near landfills. This study focuses on using UAV photogrammetry to monitor geometric changes in reclaimed landfills.

View Article and Find Full Text PDF

Laser Scanner-Based Hyperboloid Cooling Tower Geometry Inspection: Thickness and Deformation Mapping.

Sensors (Basel)

September 2024

Department of Agricultural Land Surveying, Cadastre and Photogrammetry, University of Agriculture in Krakow, 31-120 Krakow, Poland.

Hyperboloid cooling towers are counted among the largest cast-in-place industrial structures. They are an essential element of cooling systems used in many power plants in service today. Their main structural component, a reinforced-concrete shell in the form of a one-sheet hyperboloid with bidirectional curvature continuity, makes them stand out against other towers and poses very high construction and service requirements.

View Article and Find Full Text PDF

As one of the best means of obtaining the geometry information of special shaped structures, point cloud data acquisition can be achieved by laser scanning or photogrammetry. However, there are some differences in the quantity, quality, and information type of point clouds obtained by different methods when collecting point clouds of the same structure, due to differences in sensor mechanisms and collection paths. Thus, this study aimed to combine the complementary advantages of multi-source point cloud data and provide the high-quality basic data required for structure measurement and modeling.

View Article and Find Full Text PDF

In the present study, UAV-based monitoring of the Gallenzerkogel landslide (Ybbs, Lower Austria) was carried out by three flight missions. High-resolution digital elevation models (DEMs), orthophotos, and density point clouds were generated from UAV-based aerial photos via structure-from-motion (SfM). According to ground control points (GCPs), an average of 4 cm root mean square error (RMSE) was found for all models.

View Article and Find Full Text PDF