Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As one of the best means of obtaining the geometry information of special shaped structures, point cloud data acquisition can be achieved by laser scanning or photogrammetry. However, there are some differences in the quantity, quality, and information type of point clouds obtained by different methods when collecting point clouds of the same structure, due to differences in sensor mechanisms and collection paths. Thus, this study aimed to combine the complementary advantages of multi-source point cloud data and provide the high-quality basic data required for structure measurement and modeling. Specifically, low-altitude photogrammetry technologies such as hand-held laser scanners (HLS), terrestrial laser scanners (TLS), and unmanned aerial systems (UAS) were adopted to collect point cloud data of the same special-shaped structure in different paths. The advantages and disadvantages of different point cloud acquisition methods of special-shaped structures were analyzed from the perspective of the point cloud acquisition mechanism of different sensors, point cloud data integrity, and single-point geometric characteristics of the point cloud. Additionally, a point cloud void repair technology based on the TLS point cloud was proposed according to the analysis results. Under the premise of unifying the spatial position relationship of the three point clouds, the M3C2 distance algorithm was performed to extract the point clouds with significant spatial position differences in the same area of the structure from the three point clouds. Meanwhile, the single-point geometric feature differences of the multi-source point cloud in the area with the same neighborhood radius was calculated. With the kernel density distribution of the feature difference, the feature points filtered from the HLS point cloud and the TLS point cloud were fused to enrich the number of feature points in the TLS point cloud. In addition, the TLS point cloud voids were located by raster projection, and the point clouds within the void range were extracted, or the closest points were retrieved from the other two heterologous point clouds, to repair the top surface and façade voids of the TLS point cloud. Finally, high-quality basic point cloud data of the special-shaped structure were generated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787028PMC
http://dx.doi.org/10.3390/s22249627DOI Listing

Publication Analysis

Top Keywords

point cloud
68
point clouds
28
point
24
cloud data
20
tls point
20
cloud
17
repair technology
8
data acquisition
8
multi-source point
8
high-quality basic
8

Similar Publications

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

Effects of location- and object-based attention on sensory processing have been mostly studied in isolation leaving the relations between them less well understood. In an EEG experiment, temporal dynamics of location- and object-based attention were investigated with a probabilistic spatial cueing task to test temporal differences between sensory enhancement of two locations in one object. Stimuli consisted of two vertical rectangles/bars filled with a random noise pattern.

View Article and Find Full Text PDF

3D Structural Phenotype of the Optic Nerve Head in Glaucoma and Myopia - A Key to Improving Glaucoma Diagnosis in Myopic Populations.

Am J Ophthalmol

September 2025

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta

Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.

Design: Retrospective cross-sectional study.

Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').

View Article and Find Full Text PDF