Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Determining the technological quality of fresh meat pieces is essential in the meat industry to ensure the production of high-quality products. For this purpose, nuclear magnetic resonance (NMR) is a non-destructive and non-invasive technique that appears as an alternative to traditional methodologies. The objective of this work is to determine the potential of magnetic resonance imaging (MRI) and time-domain (TD-NMR) relaxometry for determining the physicochemical characterization of fresh hams with different industrial destinations (both fresh and cured products, such as dry-cured ham). For this study, the , and muscles of 20 fresh hind legs from white pigs, classified into four categories according to their fat content, were analyzed. The muscle was selected as a model, and positive and negative correlations were obtained between different physicochemical parameters and the longitudinal (T1) and transverse (T2) relaxation times obtained by MRI and TD-NMR. Regression models using T1 and T2 were also developed to predict the muscle water-holding capacity (WHC) and drip loss, using high, medium, and low magnetic field NMR (R > 0.80). Therefore, MRI and TD-NMR could be considered as highly suitable and accurate non-destructive techniques for the WHC determination in the meat industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248548PMC
http://dx.doi.org/10.3390/foods14132329DOI Listing

Publication Analysis

Top Keywords

water-holding capacity
8
relaxometry determining
8
meat industry
8
magnetic resonance
8
mri td-nmr
8
fresh
5
contributions estimating
4
estimating water-holding
4
capacity fresh
4
fresh pork
4

Similar Publications

Hardness of meat is one of the most important textural properties noted while eating. Bromelain, found in pineapples, is an enzyme that degrades collagen, a factor that affects meat hardness. The latter is generally evaluated based on shear strength and texture; however, such methods are destructive.

View Article and Find Full Text PDF

Bio-based cellulose aerogels with liquid absorption and retention capability for sustainable personal hygiene applications.

Int J Biol Macromol

September 2025

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

Efficient water-absorbing and water-holding materials have shown notable promise in various applications, including hygiene products, agriculture, and drug delivery systems. Opposed to traditional absorbents prepared using synthetic polymers, bio-based, environmentally friendly efficient absorbents have attracted more attention from both academia and the industry. Herein, the aerogel absorbents from functional sodium carboxymethyl cellulose (CMCNa), citric acid (CA) crosslinker, and cellulose nanofibers (CNF) have been developed via freeze-drying and cross-linking process.

View Article and Find Full Text PDF

Background And Aim: The search for sustainable and cost-effective protein alternatives to soybean meal in livestock diets has led to the exploration of legumes such as faba beans [FBs] ( L.). This study investigated the effects of dietary inclusion of FBs on carcass traits, meat quality, and selected blood parameters in Awassi lambs.

View Article and Find Full Text PDF

The timing of microbial inoculation is a decisive factor influencing both the efficiency and quality of green waste (GW) composting. This study evaluated the effects of applying a self-developed lignocellulose-degrading compound microbial inoculum at different composting phases (mesophilic, thermophilic, and cooling) compared to a commercial Effective Microorganisms agent. Thermophilic-phase inoculation (T2) was most effective by enhancing the complementary metabolic functions between strains, thus establishing an efficient lignocellulose degradation system.

View Article and Find Full Text PDF

Hypothermal effects of cold anesthesia on the vitality and muscle quality of live Chinese mitten crab (Eriocheir sinensis).

Food Res Int

November 2025

Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:

Crab encounters obstacles like elevated transportation expense and diminished survival rate. In the study, the effects of cold anesthesia (CA), including fast cooling (FC) and slow cooling (SC) anesthesia on the vitality state and muscle quality of Chinese mitten crab were researched. We found firstly that the CA dormancy temperature range of Chinese mitten crab was identified from -2 to 10 °C, and 7 °C was optimal.

View Article and Find Full Text PDF