Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Global fruit production is excessive, and fruit wine is a significant outcome of fruit processing. The pigment in fruit wine gives it a vibrant color and affects its quality, taste, and marketing. The pigments in fruit wines are commonly divided into three categories: anthocyanins, carotenoids, and chlorophylls. They are naturally synthesized pigments in plants that undergo complex biochemical changes that eventually tend to be stable in mature fruit wine, showing the color properties desired by consumers. Under normal circumstances, pigment molecules are unstable and have isomers, which makes it difficult to accurately identify and control them. In addition, biochemical changes produce a series of chemical derivatives that affect bioavailability and biological functions. This review summarizes the chemical basis, formation process, influencing factors, identification techniques, bioavailability, and bioactivity of fruit wine pigments, providing an important reference for the utilization of fruit resources and the development of high-quality fruit wine products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248731PMC
http://dx.doi.org/10.3390/foods14132207DOI Listing

Publication Analysis

Top Keywords

fruit wine
24
fruit
10
pigment fruit
8
biochemical changes
8
wine
6
transformation pigment
4
wine precise
4
precise control
4
control pigment
4
pigment formation
4

Similar Publications

Functional Metabolism of Aromatic Precursors in Hanseniaspora: A Source of Natural Bioactive Compounds.

FEMS Yeast Res

September 2025

Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.

Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.

View Article and Find Full Text PDF

Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.

View Article and Find Full Text PDF

Survey of a grapevine microbiome through functional metagenomics.

Food Res Int

November 2025

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:

Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.

View Article and Find Full Text PDF

Acanthopanax sessiliflorus, belonging to the Araliaceae family, is used as medicinal herbs and dietary supplements, and can be consumed as seasoned vegetables, salads, pickles, functional tea, and wine. Their edible parts (shoots, leaves, fruis, and stems) are considered as a highly valuable food source with health benefits. The comparison of the qualitative and quantitative characteristics of functional compounds in these plant parts is still limited.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF