98%
921
2 minutes
20
Korean style spicy cabbage (KSC) is a prominent fermented vegetable consumed globally. Nevertheless, microbial succession dynamics, interactions, and flavor-core microbiome correlations lack comprehensive understanding. Metabolomics revealed eight taste-active compounds and sixteen aroma-active compounds as key flavor determinants throughout fermentation. Amplicon sequencing elucidated dynamic shifts in bacterial and fungal community structures during KSC fermentation, with subsequent analyses identifying free sugars as the primary drivers of microbial succession. Spearman correlation analysis further identified Psychrobacter, Latilactobacillus, Weissella, Pseudomonas, Rothia, Candida, Vishniacozyma, Kazachstania, and Cutaneotrichosporon as core microbes driving the formation of characteristic flavor metabolites in KSC. Through metagenomic analysis, we reconstructed the metabolic network underlying the formation of characteristic flavor compounds. Our study elucidates microbial diversity dynamics and flavor metabolite formation during KSC fermentation, offering actionable insights for identifying critical fermentation phases and optimizing inoculated starter culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.145464 | DOI Listing |
J Microbiol Biol Educ
September 2025
University of California Riverside, Riverside, California, USA.
DNA literacy is becoming increasingly essential for navigating healthcare, understanding pandemics, and engaging with biotechnology-yet genomics education remains limited at the secondary level of education. We present a modular, hands-on curriculum designed for high school and early undergraduate students (ages 14-21) that introduces key genomics concepts through an experiment on fermentation, a process that is key to food preservation and medicine. Students follow a complete scientific process: exploring what DNA is and how microbial succession works, analyzing real DNA sequencing data, and writing a formal scientific report.
View Article and Find Full Text PDFJ Food Sci Technol
October 2025
Department of Liquor Brewing, Moutai Institute, Renhuai, 564507 China.
Unlabelled: This study explored the impact of green tea addition on bacterial communities in Moutai-flavored fermentation using high-throughput sequencing, alongside physicochemical and flavor analysis. Significant differences in microbial succession were observed over the 40-day fermentation period among types with varying tea proportions, resulting in distinct bacterial communities. Sixteen dominant genera, including , , and , were identified, with their relative abundances and succession patterns varying by type.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China. Electronic address:
Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog
Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
National Engineering Lab for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
Methylparaben (MeP), Benzethonium chloride (BZC) and microplastics (MPs) as emerging contaminants are frequently detected in the environment. Furthermore, MPs can be colonized by microorganisms to form a unique ecological niche known as the "plastisphere". In this study, three biofilm-based sulfur autotrophic denitrification (SAD) reactors were established, which were exposed to 0.
View Article and Find Full Text PDF