The correlation of liquid biopsy genomic data to radiomics in colon, pancreatic, lung and prostatic cancer patients.

Eur J Cancer

Laboratoire d'Imagerie Biomedicale Multimodale Paris-Saclay (BioMAPS), Université Paris-Saclay, Inserm, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Villejuif 94800, France; Université Paris-Saclay, Villejuif, France; Département d'Imagerie, Gustave Roussy, Un

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: With the advances in artificial intelligence (AI) and precision medicine, radiomics has emerged as a promising tool in the field of oncology. Radiogenomics integrates radiomics with genomic data, potentially offering a non-invasive method for identifying biomarkers relevant to cancer therapy. Liquid biopsy (LB) has further revolutionized cancer diagnostics by detecting circulating tumor DNA (ctDNA), enabling real-time molecular profiling. This study explores the integration of radiomics and LB to predict genomic alterations in solid tumors, including lung, colon, pancreatic, and prostate cancers.

Methods: A retrospective study was conducted on 418 patients from the STING trial (NCT04932525), all of whom underwent both LB and CT imaging. Predictive models were developed using an XGBoost logistic classifier, with statistical analysis performed to compare tumor volumes, lesion counts, and affected organs across molecular subtypes. Performance was evaluated using area under the curve (AUC) values and cross-validation techniques.

Results: Radiomic models demonstrated moderate-to-good performance in predicting genomic alterations. KRAS mutations were best identified in pancreatic cancer (AUC=0.97), while moderate discrimination was noted in lung (AUC=0.66) and colon cancer (AUC=0.64). EGFR mutations in lung cancer were detected with an AUC of 0.74, while BRAF mutations showed good discriminatory ability in both lung (AUC=0.79) and colon cancer (AUC=0.76). In the radiomics predictive model, AR mutations in prostate cancer showed limited discrimination (AUC = 0.63).

Conclusion: This study highlights the feasibility of integrating radiomics and LB for non-invasive genomic profiling in solid tumors, demonstrating significant potential in patient stratification and personalized oncology care. While promising, further prospective validation is required to enhance the generalizability of these models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2025.115609DOI Listing

Publication Analysis

Top Keywords

liquid biopsy
8
genomic data
8
colon pancreatic
8
cancer
8
genomic alterations
8
solid tumors
8
colon cancer
8
radiomics
6
genomic
5
lung
5

Similar Publications

Purpose: Early detection of HPV-associated oropharyngeal cancer (HPV+OPSCC), the most common HPV cancer in the United States, could reduce disease-related morbidity and mortality, yet currently, there are no early detection tests. Circulating tumor HPV DNA (ctHPVDNA) is a sensitive and specific biomarker for HPV+OPSCC at diagnosis. It is unknown if ctHPVDNA is detectable prior to diagnosis, and thus it's potential as an early detection test.

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Background: Current aftercare in breast cancer survivors aims to detect local recurrences or contralateral disease, while the detection of distant metastases has not been a central focus due to a lack of evidence supporting an effect on overall survival. However, the data underpinning these guidelines are mainly from trials of the 1980s/1990s and have not been updated to reflect the significant advancements in diagnostic and therapeutic options that have emerged over the past 40 years. In this trial, the aim is to test whether a liquid biopsy-based detection of (oligo-) metastatic disease at an early pre-symptomatic stage followed by timely treatment can impact overall survival compared to current standard aftercare.

View Article and Find Full Text PDF

Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.

View Article and Find Full Text PDF