98%
921
2 minutes
20
COVID-19 and seasonal influenza have taken a huge toll on the global economy and global health. Given the potential of COVID-19 to transform into a chronic epidemic akin to seasonal influenza, the influenza virus and SARS-CoV-2 will continue to be a significant threat to healthcare for some time to come. Coinfection involving the two viruses has been proven to worsen the severity of the illness, as evidenced by clinical observational data. Vaccination remains the most effective measure in the prevention and treatment of infectious diseases. In addition, the coadministration of influenza virus and SARS-CoV-2 vaccines offered greater benefits than either vaccine alone. Combination vaccines are also a major hotspot in novel vaccine development. This review highlights the advancements in the development of combined vaccines for COVID-19 and seasonal influenza, as demonstrated in animal studies and clinical trials, and emphasizes the importance of a combined vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238597 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1578733 | DOI Listing |
Arch Microbiol
September 2025
Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.
View Article and Find Full Text PDFmSphere
September 2025
Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Swine influenza A virus (swIAV) is an important zoonotic pathogen with the potential to cause human influenza pandemics. Swine are considered "mixing vessels" for generating novel reassortant influenza A viruses. In 2009, a swine-origin reassortant virus (2009 pandemic H1N1, pdm/09 H1N1) spilled over to humans, causing a global influenza pandemic.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.
View Article and Find Full Text PDFmBio
September 2025
Corner Therapeutics, Watertown, Massachusetts, USA.
Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.
View Article and Find Full Text PDF