98%
921
2 minutes
20
Purpose: This review evaluates the clinical utility of emerging optical techniques-specifically, near-infrared spectroscopy (NIRS), optical coherence tomography (OCT), photoacoustic imaging (PAI), and fiber-optic sensors (FOSs)-as noninvasive, patient-friendly modalities for diagnosing lower urinary tract dysfunction. We assess their potential integration into wearable systems for personalized urological care and propose a novel clinical pathway for their use.
Methods: We included published studies employing optical modalities to evaluate bladder function or pathology, focusing on diagnostic accuracy, feasibility, and patient-related outcomes. We also examined technical principles, diagnostic performance metrics (e.g., sensitivity, resolution, penetration), and clinical validation across optical modalities. A total of 40 articles met the final inclusion criteria.
Results: NIRS demonstrates >85% sensitivity for detecting detrusor overactivity in small-scale trials, with wearable devices enabling continuous bladder monitoring. OCT has been found to improve the detection of carcinoma in situ by up to 22% compared to white-light cystoscopy, although its shallow penetration (~2 mm) limits evaluation of deeper layers. PAI visualizes microvascular structures to depths of several centimeters, suggesting strong potential for noninvasive bladder tumor diagnosis. FOSs offer continuous intravesical pressure monitoring with reduced discomfort, although semi-invasive placement remains a limitation.
Conclusion: Noninvasive optical diagnostics offer a safer, more patient-friendly alternative to conventional cystoscopy and urodynamic studies. However, larger multicenter trials, cost-effectiveness analyses, and regulatory alignment are needed. Integrating these emerging modalities with telemedicine and artificial intelligence could transform bladder care into a continuous, home-based model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12242174 | PMC |
http://dx.doi.org/10.5213/inj.2550110.055 | DOI Listing |
Clin Transplant Res
September 2025
Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Seoul, Korea.
Background: Calcineurin inhibitor (CNI) toxicity is a significant cause of graft dysfunction in kidney transplant recipients, yet distinguishing it from acute rejection (AR) and acute tubular necrosis (ATN) remains challenging. This study investigated the use of urinary mRNA biomarkers as a noninvasive tool for identifying CNI toxicity.
Methods: We retrospectively enrolled 110 kidney transplant recipients and classified them into four groups based on pathological findings: stable graft function (n=35), CNI toxicity (n=25), AR (n=30), and ATN (n=20).
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
First Affiliated Hospital of Anhui University of Chinese Medicine.
Objectives: To investigate the mechanism of (QJZ) for ameliorating renal damage in MRL/lpr mice.
Methods: With 6 female C57BL/6 mice as the normal control group, 30 female MRL/lpr mice were randomized into model group, QJZ treatment groups at low, moderate and high doses, and prednisone treatment group (6). After 8 weeks of treatment, the mice were examined for 24-h urine protein, creatinine and albumin levels, serum levels of IgG, complement 3 (C3), C4, anti-dsDNA, interferon γ (IFN‑γ) and interleukin 17 (IL-17).
Protein Pept Lett
September 2025
Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou730000, Gansu, China.
Introduction: Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.
Methods: Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.
NMR Biomed
October 2025
Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
Chronic kidney disease (CKD) is an increasing global health problem, resulting in gradual loss of renal function and irreversible renal injury. The noninvasive detection, monitoring, and timely intervention of CKD might benefit the patients' prognosis. This study aims to assess renal functional injury in CKD patients by using magnetic resonance imaging (MRI) of quantitative susceptibility mapping (QSM).
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China; National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Fudan University, Shanghai, China. Electronic address:
Background: This study characterized the urinary pharmacokinetics and pharmacodynamics (PK/PD) of linezolid (LNZ) in critically ill patients with renal impairment and nosocomial multidrug-resistant Gram-positive urinary tract infections (UTIs). The aim was to address therapeutic challenges arising from limited treatment options and uncertain urinary excretion, to establish optimized dosing strategies.
Methods: A prospective observational study was conducted in ICU patients with renal impairment.