98%
921
2 minutes
20
Abscisic acid (ABA) mediates stress responses and growth regulation in plants, but the roles of ABA-responsive transcription factors (TFs) in Populus development remain poorly characterized. Here, we identified an ABA-upregulated TF and investigated its function through overexpression in transgenic poplar. The PtrMYBH is upregulated during ABA treatment, and its overexpression in transgenic poplar leads to leaf malformations, including reduced size and curling, with severity correlating with PtrMYBH-overexpression levels in three independent transgenic lines. PtrMYBH regulates stomatal growth and development, resulting in decreased stomatal length and aperture, along with distinct leaf structural abnormalities. Additionally, PtrMYBH affects root development, with overexpressing lines showing an increase in adventitious root number but shorter lengths, alongside morphological changes in the root elongation zone. Furthermore, morphological changes are observed in the shoot apical meristem (SAM) and stem-differentiating xylem (SDX) of PtrMYBH-overexpressing poplar. RNA-seq analyses reveal PtrMYBH's influence on the expression of genes related to cellular proliferation in the SAM and developmental pathways in the SDX. Finally, in PtrMYBH-overexpressing lines, ABA treatment results in leaf tip damage, earlier leaf drop, and stunted growth, highlighting its critical role in the ABA response. These findings lay a foundation for further exploration of TFs like PtrMYBH to regulate growth in Populus species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.70337 | DOI Listing |
Front Plant Sci
September 2025
College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.
Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Life Sciences, College of Tea Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
Oliv., a Tertiary period relict tree species endemic to China, is a rubber-producing plant valued for both medicinal and edible applications. rubber is a high-quality natural rubber prized for its excellent elasticity, abrasion resistance, and insulation properties, leading to broad industrial applications.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzh
Salvia miltiorrhiza produces pharmacologically bioactive diterpenoid tanshinones which are regulated by jasmonate (JA) and abscisic acid (ABA) signalling, while their crosstalk in this process remains unclear. Here, we demonstrated that MeJA and ABA acted synergistically to enhance tanshinone biosynthesis. We reported that a novel bZIP transcription factor, SmbZIP5, was involved in ABA- and JA-induced tanshinone biosynthesis.
View Article and Find Full Text PDFGenes (Basel)
July 2025
Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Key Laboratory of Cotton Biology and Genetic Breeding in the Northwest Inland Cotton Production Region, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China.
The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton ( spp.) remain poorly characterized.
View Article and Find Full Text PDFPlant J
August 2025
Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
DNA methylation (5-methylcytosine, 5mC) is a key epigenetic regulator of genome stability and stress adaptation in plants. However, the functional role of its oxidative derivative, 5-hydroxymethylcytosine (5hmC), remains poorly understood in plant systems, largely due to its low abundance and unresolved enzymatic origins. Here, we integrated ACE-seq (APOBEC-coupled epigenetic sequencing) with an optimized Tn5mC-seq (transposase-based library preparation in the context of whole-genome bisulfite sequencing, WGBS) approach to generate the first single-base resolution map of 5hmC in rice (Oryza sativa), unveiling its stress-responsive dynamics and regulatory interplay with 5mC during drought adaptation.
View Article and Find Full Text PDF