Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microplastics (MPs) accumulate and age in freshwater sediments, releasing leachates that may alter sediment nutrient cycling. While phosphorus (P) is crucial for freshwater eutrophication, previous studies have rarely focused on MPs leachates. Herein, this work investigated the effects of polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and related leachates on the sediment P cycling. Results indicated that aged MPs and leachates regulated the expression of P cycling functional genes via inducing DOM components and structures, and microbial communities, thereby affecting the P cycling. The primary mechanism by which aged MPs and leachates affect sediment P involved facilitating the transformation of Al-bound P into Fe (III)-bound P and organic P. Leachates containing microbial-utilizable organic matter exerted a more significant impact on converting Al-bound P into organic P. Besides, incubation and adsorption experiments revealed that aged MP could enhance P release from sediments while leachate inhibited. The effects of different aged MPs and leachate on P release vary. Compared to the control group (0.496 mg/L), P concentration in the overlying water was the highest in 5 % PE-MPs (0.659 mg/L) and the lowest in 1 % LPE (0.189 mg/L). These results provided new insights into the involvement of aged MPs and leachates in freshwater nutrient cycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.139143 | DOI Listing |