Cracking the cadherin codes that wire the nervous system.

Curr Opin Neurobiol

Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada; Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synaptic partner recognition and precise connectivity are essential components of neural circuit formation and function. Cell adhesion molecules with selective binding properties provide instructive cues for synapse specificity. Yet, we know little about how they guide the stereotyped organization of neural circuits. Advances in transcriptomics, genetic manipulations, neural tracing and imaging in intact nervous systems enable new avenues to identify mechanisms by which adhesion molecules regulate synapse specificity. Here we discuss the Cadherin superfamily, which forms one of the most functionally versatile families of cell adhesion molecules. Focusing on the classical cadherins and clustered protocadherins, we discuss recent findings that demonstrate roles in regulating synaptic partnerships and signaling properties, and optimizing neurite wiring. We highlight studies that demonstrate instructive roles through genetic manipulations with assays of synaptic connectivity. Understanding how neurons leverage a Cadherin code for specifying neural connectivity provides insights into the broader principles of circuit assembly and function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.conb.2025.103086DOI Listing

Publication Analysis

Top Keywords

adhesion molecules
12
cell adhesion
8
synapse specificity
8
genetic manipulations
8
cracking cadherin
4
cadherin codes
4
codes wire
4
wire nervous
4
nervous system
4
system synaptic
4

Similar Publications

ConspectusHydroaminoalkylation, the catalytic addition of amines to alkenes, has evolved as a powerful tool in modern synthetic chemistry, offering an atom-economic and green approach to the construction of C-C bonds. This reaction enables the direct amine functionalization of alkenes and alkynes without the need for protecting groups, directing groups, or prefunctionalization, thereby eliminating stoichiometric waste and minimizing synthetic steps. Over the past two decades, significant advances in catalyst development and mechanistic understanding have expanded the scope of hydroaminoalkylation, allowing for control over regio-, diastereo-, and enantioselectivity.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

Molecular imaging in nuclear medicine has been employed extensively in recent years for tumor-targeted diagnosis and treatment that is attributed to its non-invasive property, which enables visualized functional localization. This functionality relies on the development of radionuclide molecular probes designed with the objective of identifying specific targets on the surface of tumors. Epithelial cell adhesion molecules (EpCAM) are considered to be a promising target as an antigenic marker for its widely present and integral to the processes associated with tumor occurrence and progression.

View Article and Find Full Text PDF

predicts poor prognosis and modulates immune infiltration in gastric cancer: a TCGA-based bioinformatics study.

Front Genet

August 2025

Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.

Background: Gastric cancer (GC) is a leading cause of cancer-related mortality; however, biomarkers predicting its immunotherapy resistance remain scarce. Vascular cell adhesion molecule ()-, an immune cell adhesion mediator, is implicated in tumor progression; however, its prognostic and immunomodulatory roles in GC remain unclear.

Methods: In this study, we analyzed expression and its clinical relevance in GC using RNA-sequencing data from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.

View Article and Find Full Text PDF