98%
921
2 minutes
20
The genus of Actinidia consists of the popular kiwifruits consuming worldwide. Most kiwifruit species are naturally distributed in warm and moist environments. So, they are vulnerable to high levels of heat stress. Till now, genetic basis of kiwifruit thermotolerance has remained largely unexplored. Here, we uncover a natural variation responsible for thermotolerance in kiwifruit species. We reveal that thermotolerant kiwifruit species have increased expression of AcEGY3, a gene encoding a chloroplast-localized protein, which can promote expression of nuclear thermotolerance genes via HO-dependent retrograde signaling. We show that natural variation in the promoter of AcEGY3 constitute a binding site for the heat stress-inducible transcription factor AcGATA1. The increased expression of AcEGY3 is regulated by AcGATA1 and its possible interaction with another transcription factor AcHSFA2-2. This natural variation is absent from the thermosensitive kiwifruit species. Collectively, our results reveal genetic basis of kiwifruit thermotolerance and set the foundation for breeding thermotolerant kiwifruits cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227537 | PMC |
http://dx.doi.org/10.1038/s41467-025-61593-5 | DOI Listing |
J Appl Microbiol
September 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed-to-be-University), Pillaiyarkuppam, Pondicherry - 607 402, India.
Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).
Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.
Int J Biometeorol
September 2025
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.
View Article and Find Full Text PDFChaos
September 2025
Department of Mathematics, Visva-Bharati, Santiniketan 731235, India.
Biological models are important in describing species interaction, disease spread, and environmental processes. One key aspect in improving the predictive capability of these models is deciding which parametrization is used to formulate the mathematical model. Considering two distinct functions with similar shapes and the same qualitative properties in a model can lead to markedly different model predictions.
View Article and Find Full Text PDFmSphere
September 2025
Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
is a commensal bacterium that colonizes the gut of humans and animals and is a major opportunistic pathogen, known for causing multidrug-resistant healthcare-associated infections (HAIs). Its ability to thrive in diverse environments and disseminate antimicrobial resistance genes (ARGs) across ecological niches highlights the importance of understanding its ecological, evolutionary, and epidemiological dynamics. The CRISPR2 locus has been used as a valuable marker for assessing clonality and phylogenetic relationships in .
View Article and Find Full Text PDF