Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The anaerobic/aerobic/anoxic-aerobic granular sludge (AOA-AGS) process effectively removes nitrogen while tolerating limited oxygen and carbon. However, integrating anaerobic ammonia oxidation (Anammox), which thrives under low organic carbon and oxygen conditions, with AOA-AGS remains challenging. This study investigated nitrogen removal performance and community changes in an AOA-AGS sequencing batch reactor with low carbon to nitrogen ratios (C/N) wastewater and reduced dissolved oxygen (DO) from 5-7 mg/L to 0.5 ± 0.2 mg/L. The total inorganic nitrogen removal rate stabilized at 82 ± 9 % under low DO, driven by partial nitrification and endogenous denitrification through dominant denitrifying glycogen-accumulating organisms (DGAOs), such as Candidatus_Competibacter (43.09 %). Anammox bacteria (mainly Candidatus_Brocadia) were enriched under long solids retention time (128 days) and low DO, synergizing with DGAOs for enhanced nitrogen removal. This study demonstrated that AOA-AGS under low DO enables efficient nitrogen removal through the synergistic endogenous denitrification by DGAOs and Anammox in low C/N wastewater, offering a sustainable strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2025.132923 | DOI Listing |