Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate and synchronized assessment of biochemical parameters, such as biomarker concentration and body fluid viscosity, is crucial for advancing early disease detection and health management. Conventional biomolecular multiparameter detection methods often rely on multiple sensors or analytical techniques, which introduce cross-talk between sensing modalities, data inconsistencies, and complex calibration requirements, ultimately compromising detection precision and adaptability. We propose a streamlined detection approach that leverages a single uncoated Quartz Crystal Microbalance (QCM) sensor to monitor the dynamic magnetized motion of biomolecules under multimodal magnetic field modulation. Unlike conventional QCM methods that rely on static mass loading effects, this approach enables the sensor to capture motion signals that encode information about biomolecule concentration and base liquid viscosity. A backpropagation (BP) neural network is employed to model the nonlinear coupling between these motion-derived signal characteristics and the target biochemical parameters. The proposed method is validated using prostate-specific antigen (PSA) as a biomolecular model analyte. Experimental results from blind tests, where both concentration and viscosity were simultaneously unknown, demonstrate a prediction accuracy of 90 % for concentrations ranging from 0.01 to 1000 ng/mL and 87 % for viscosities between 1 and 6 cP. By integrating multimodal magnetic modulation with QCM-based motion sensing and machine learning, the BP-MMM-QCM technique provides a versatile and high-precision solution for biomolecule analysis. Accurate detection of biomolecule concentrations is essential for early disease diagnosis as well as monitoring disease progression and therapeutic responses. This approach overcomes the limitations of conventional QCM methods and enables real-time, multi-parameter detection in a single assay, making it a promising tool for disease diagnostics and health monitoring applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2025.128532DOI Listing

Publication Analysis

Top Keywords

multimodal magnetic
12
magnetic modulation
8
detection biomolecule
8
biomolecule concentration
8
concentration base
8
base liquid
8
liquid viscosity
8
biochemical parameters
8
early disease
8
methods rely
8

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Introduction: Synovial sarcoma (SS) is one of the most prevalent malignant soft tissue sarcomas in children and adolescents. Pediatric populations often present with atypical features, complicating the differentiation from benign intramuscular venous malformations (VMs).

​​case Presentation: An 11-year-old male with a four-year history of progressive right plantar pain and a compressible intramuscular mass.

View Article and Find Full Text PDF

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles.

Beilstein J Nanotechnol

August 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.

The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface.

View Article and Find Full Text PDF

Bipolar disorder (BD) is a debilitating mental illness characterized by significant mood swings, posing a substantial challenge for accurate diagnosis due to its clinical complexity. This paper presents CS2former, a novel approach leveraging a dual channel-spatial feature extraction module within a Transformer model to diagnose BD from resting-state functional MRI (Rs-fMRI) and T1-weighted MRI (T1w-MRI) data. CS2former employs a Channel-2D Spatial Feature Aggregation Module to decouple channel and spatial information from Rs-fMRI, while a Channel-3D Spatial Attention Module with Synchronized Attention Module (SAM) concurrently computes attention for T1w-MRI feature maps.

View Article and Find Full Text PDF