Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cuproptosis, a copper-induced form of regulated cell death, holds therapeutic promise in cancer but remains mechanistically unclear. We developed Mito-TPCA, a mitochondrial thermal proximity coaggregation strategy combining enzyme-catalyzed proteome labeling with thermal profiling, to map mitochondrial protein-protein interaction dynamics during cuproptosis. This approach revealed that copper disrupts the association of pyruvate dehydrogenase kinases (PDKs) with the pyruvate dehydrogenase (PDH) complex by targeting lipoyl domains, triggering PDH dephosphorylation and aberrant activation. We demonstrate that this PDH activation is a key driver of cuproptosis and contributes to the heightened susceptibility of cancer cells. These findings establish PDH dephosphorylation/activation as a central mechanism of cuproptosis and a potential anti-cancer therapeutic target. Mito-TPCA offers a versatile platform to study mitochondrial protein complex dynamics in live cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2025.115937 | DOI Listing |