Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a high spectral energy density all-fiber nanosecond pulsed 1.7 μm light source specifically designed for photoacoustic microscopy (PAM). The system targets the 1st overtone absorption of C-H bonds near 1720 nm within the near-infrared-III (NIR-III) window, where lipids exhibit strong optical absorption, and tissues benefit from reduced scattering and high permissible fluence. To achieve narrow-linewidth, high pulse energy, and high pulse repetition rate (PRR), we developed a master oscillator fiber amplifier architecture based on stimulated Raman scattering. A 1589.80 nm Raman pump and a custom-built narrow-linewidth Raman seed laser were employed to generate spectrally pure 1719.44 nm pulses (∼0.10 nm linewidth). The proposed light source delivers nanosecond pulses (∼5 ns) with high pulse energy (≥2.2 μJ) and tunable PRRs up to 300 kHz, resulting in a spectral energy density of approximately 22 μJ/nm-significantly higher than that of conventional 1.7 μm light sources. Performance of the NIR-PAM system was validated through resolution testing with a 1951 USAF target, demonstrating a spatial resolution of approximately 4.14 μm and an axial resolution of approximately 85.5 μm. Phantom imaging of CH-rich polymer films and ex vivo lipid-rich biological tissues confirmed the system's high spatial fidelity and strong contrast for lipid-specific structures. This compact, stable, and spectrally refined light source with high spectral energy density can offer an effective solution for high-resolution, label-free molecular imaging and represents a promising platform for clinical photoacoustic imaging applications involving lipid detection and metabolic disease diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221601PMC
http://dx.doi.org/10.1016/j.pacs.2025.100744DOI Listing

Publication Analysis

Top Keywords

spectral energy
16
energy density
16
light source
16
high spectral
12
high pulse
12
high
8
density all-fiber
8
all-fiber nanosecond
8
nanosecond pulsed
8
photoacoustic microscopy
8

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Direct Deep-UV Second-Harmonic Generation in Disordered Χ-Modulated Ferroelectric Crystals.

Adv Mater

September 2025

Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.

The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.

View Article and Find Full Text PDF

Gbits/s-Level Encrypted Spectral Wireless Communication Enabled by High-Performance Flexible Organic Hyperspectrometer.

Adv Mater

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.

The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.

View Article and Find Full Text PDF

Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.

View Article and Find Full Text PDF

The application of infrared spectroscopy and DFT calculations to better understand interactions between bosentan hydrate and sildenafil base induced by high energy ball milling.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, Osaka, Japan.

In this study, infrared spectroscopy investigations in combination with DFT calculations were used to elucidate interactions between bosentan monohydrate (BOS) and sildenafil base (SIL) initiated under high energy ball milling. The research was focused mainly on the vibrational properties of their co-milled binary solid dispersions compared to the physical mixtures and single drugs. First, the stability and structure of sildenafil isomers were established.

View Article and Find Full Text PDF