Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

People with insulin resistance are at increased risk for cognitive decline. Insulin resistance has previously been considered primarily a condition of ageing but it is increasingly seen in younger adults. It is possible that impaired insulin function in early adulthood has both proximal effects and moderates or even accelerates changes in cerebral metabolism in ageing. Thirty-six younger (mean 27.8 years) and 43 older (mean 75.5) participants completed a battery of tests, including blood sampling, cognitive assessment and a simultaneous PET/MR scan. Cortical thickness and cerebral metabolic rates of glucose were derived for 100 regions and 17 functional networks. Older adults had lower rates of regional cerebral glucose metabolism than younger adults across the brain even after adjusting for lower cortical thickness in older adults. Higher fasting blood glucose was also associated with lower regional cerebral glucose metabolism in older adults. In younger adults, higher insulin resistance was associated with lower rates of regional cerebral glucose metabolism but this was not seen in older adults. The largest effects of insulin resistance in younger adults were in prefrontal, parietal and temporal regions; and in the control, salience ventral attention, default and somatomotor networks. Higher rates of network glucose metabolism were associated with lower reaction time and psychomotor speed. Higher levels of insulin resistance were associated with lower working memory. Our results underscore the importance of insulin sensitivity and glycaemic control to brain health and cognitive function across the adult lifespan, even in early adulthood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118730PMC
http://dx.doi.org/10.1038/s44324-024-00019-0DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
glucose metabolism
20
cerebral glucose
16
younger adults
16
older adults
16
associated lower
16
regional cerebral
12
adults
9
working memory
8
early adulthood
8

Similar Publications

Estimated Glucose Disposal Rate and Risk of Stroke and Dementia in Nondiabetics: A UK Biobank Prospective Cohort Study.

Arterioscler Thromb Vasc Biol

September 2025

Institute of Cardiovascular Diseases and Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu (K.L., H.M., W.J

Background: The estimated glucose disposal rate (eGDR) is a validated surrogate marker of insulin resistance. However, its association with stroke and dementia in nondiabetic populations remains insufficiently investigated.

Methods: This prospective cohort study included nondiabetic participants from the UK Biobank.

View Article and Find Full Text PDF

Introduction: Liver transplantation is associated with various metabolic disorders. Peri-transplant hyperglycemia is among the most frequent metabolic disorders among liver transplant recipients. Hyperglycemia following liver transplantation can increase the risk of post-transplant complications, potentially impacting both graft and recipient outcomes.

View Article and Find Full Text PDF

Connecting the Dots: Hepatic Steatosis as a Central Player in the Choreography of the Liver-Cardiovascular-Kidney-Metabolic Syndrome.

Heart Lung Circ

September 2025

Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.

View Article and Find Full Text PDF

A protocol for measuring phenotypical facial disease markers in a mouse model of iatrogenic Cushing's syndrome.

Methods Cell Biol

September 2025

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France. Electronic ad

Cushing's syndrome is caused by chronic exposure to excessive levels of glucocorticoids. It is characterized by significant phenotypic alterations including increased visceral adiposity and fat deposits on the cheeks, leading to a characteristic 'moon face' appearance. Although glucocorticoid therapy is widespread, its associated side effects are of significant clinical concern.

View Article and Find Full Text PDF

Targeting the IRS1 macromolecular signaling node by Trienomycin a triggers cytoprotective autophagy in pancreatic adenocarcinoma.

Int J Biol Macromol

September 2025

Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China. Electronic address:

Pancreatic adenocarcinoma (PAAD) lacks effective therapies due to complex macromolecular signaling networks. Here, we identified the natural compound Trienomycin A (TA) as a potent binder and degrader of the key signaling adaptor protein Insulin Receptor Substrate 1 (IRS1), disrupting its macromolecular assembly in insulin-like growth pathways. Through integrated biochemical, cellular, and in vivo analyses, we demonstrated that TA directly bound the phosphotyrosine-binding (PTB) domain of IRS1, inducing proteasomal degradation of this critical macromolecular hub mediated by the E3 ubiquitin ligase FBXW8.

View Article and Find Full Text PDF