98%
921
2 minutes
20
Artificial lungs support patients with acute or chronic lung diseases. However, complications such as the activation of blood components leading to thrombosis and inflammation limit their long-term applicability. The systematic characterization of protein adhesion events on different material parts of the oxygenators at different flow rates can shed light on the initial reaction of blood to foreign materials. Miniaturized extracorporeal circuit devices with heparin-coated gas (PMP) or heat-exchange (PET) hollow-fiber membranes were exposed to high and low flow rates. Hemocompatibility and adsorption of plasma proteins were measured after one minute to six hours using mass spectroscopy analyses. Approximately 150-200 different proteins were present on the membranes, with almost no variation in the 10 most abundant proteins. Protein adsorption to the membrane types did not vary to a large extent, but a decreased flow rate significantly reduced the differences in protein adsorption between both membrane types and led to the adhesion of significantly higher amounts of inhibitory proteins C1INH and α1-AT. At the higher flow rate, coagulation-associated proteins adsorbed significantly more to PET membranes, whereas complement-activating-related proteins adsorbed more on PMP membranes. Our results highlight the importance of analyzing all circuit components to understand the activation of blood components during ECMO. The primary contributor to increased protein adsorption and activation of blood components was an increased flow rate. Therefore, flow rate adjustments should ideally aim to achieve optimal oxygenation levels of around 80% while minimizing protein adsorption and blood activation during ECMO. Notably, at a low flow rate, PMP HFM exhibited a significant increase in binding of complement and inflammation inhibitors, suggesting a potential benefit of lowering the flow rate apart from the general reduction in protein adsorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211862 | PMC |
http://dx.doi.org/10.3389/fcvm.2025.1578538 | DOI Listing |
Food Chem
September 2025
College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China. Electronic address:
Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).
View Article and Find Full Text PDFBiomater Adv
September 2025
Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.
This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.
View Article and Find Full Text PDFJDS Commun
September 2025
Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704.
The water activity of milk powders is a critical parameter for predicting quality and safety, but some retailers in the supply chain may be limited to measuring moisture content, which can be easier and more affordable. Moisture sorption isotherms relate moisture content to the corresponding water activity. In this study, moisture adsorption and desorption isotherms were determined for nonfat dry milk (NFDM) and milk protein concentrate (MPC-85) powder samples at ambient and elevated temperatures via the modernized dynamic dewpoint isotherm (DDI) method.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:
Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.
View Article and Find Full Text PDFFood Res Int
November 2025
Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
The poor foaming of egg yolks has long plagued the food industry. In this study, four egg yolk spheres (EYS) were prepared via acid- and alkaline pH-shift methods, and the main factors affecting the variation in their foaming capacity were determined. The tertiary structure of EYS under hydrogen bonding and electrostatic interactions unfolded in acidic shifts, exposing many functional groups, and refolded in basic shifts and exposed hydrophobic side chains.
View Article and Find Full Text PDF