98%
921
2 minutes
20
CENP-F is a large protein acting in fundamental cell cycle processes, including nuclear envelope breakdown, mitotic microtubule function and chromosome segregation. These activities are mediated by specific CENP-F protein elements that interact with microtubules, motor proteins, centrosomes and kinetochores. CENP-F is then ubiquitinated and degraded in late mitosis. The C-terminal region of CENP-F contains regulatory elements, including a region required for nuclear localisation in interphase and a KEN box driving proteolysis in late mitosis. Here we show that CENP-F generates proximity ligation products with importin beta during mitosis. Furthermore, induction of importin beta overexpression influences CENP-F at two levels: it alters CENP-F mitotic localisation, promoting its accumulation at spindle poles and decreasing its association with kinetochores, and also causes its persistence in the late mitotic window in which CENP-F normally disappears, in a process that requires microtubule integrity and dynamics. These data implicate therefore importin beta in spatial and temporal control of CENP-F during mitosis, and uncover a functional interplay between CENP-F's ability to regulate mitotic microtubules and, in turn, a protective role of microtubules against CENP-F premature ubiquitination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216719 | PMC |
http://dx.doi.org/10.1038/s41598-025-96504-7 | DOI Listing |
Drug Dev Res
September 2025
Department of Orthopedics, Gaoxin Branch of The First Affiliated Hospital, Nanchang University, Nanchang, PR China.
Osteosarcoma (OS) is a common malignant bone tumor, frequently associated with impaired osteogenic differentiation of tumor cells. Recent studies have suggested that the NOTCH signaling pathway plays a crucial role in maintaining tumor cell stemness and may influence their differentiation status. This study investigates the role of NOTCH2, a key receptor in the NOTCH family, in regulating osteogenic differentiation in OS.
View Article and Find Full Text PDFNat Commun
August 2025
Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium.
The accumulation of foamy macrophages is a pathological hallmark of demyelinating brain disorders. Perturbed metabolism and efflux of intracellular lipids underlie the development of a harmful foamy macrophage phenotype in these disorders, yet, the molecular mechanisms underlying this dysregulation are poorly understood. Here, we show that the ubiquitin-proteasome system controls the turnover of the cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) in lipid-loaded macrophages in the brain.
View Article and Find Full Text PDFViruses
August 2025
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Měnglà virus (MLAV) is a member of the genus in the family which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair IFNα/β gene expression and block IFNα/β-induced Jak-STAT signaling, respectively, suggesting the capacity to counteract human innate immune defenses.
View Article and Find Full Text PDFJ Hum Genet
August 2025
Department of Public Health, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia.
Leukodystrophies are inherited disorders characterized by progressive degeneration of white matter in the central nervous system. Here, we investigate a previously uncharacterized autosomal recessive leukodystrophy which is associated with the homozygous missense variant in ZNF319 (c.800T>C; p.
View Article and Find Full Text PDFNat Commun
August 2025
Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Hypoxia frequently occurs during rapid tumour growth. However, how tumour cells adapt to hypoxic stress by remodeling central cellular pathways remains largely unclear. Here, we show that hypoxia induces casein kinase 2 (CK2)-mediated glucokinase (GCK) S398 phosphorylation, which exposes its nuclear localization signal (NLS) for importin α1 binding and nuclear translocation.
View Article and Find Full Text PDF