98%
921
2 minutes
20
Spin- and valley flavor polarization plays a central role in the many-body physics of flat band graphene, with Fermi surface reconstruction - often accompanied by quantized anomalous Hall and superconducting state - observed in a variety of experimental systems. Here we describe an optical technique that sensitively and selectively detects flavor textures via the exciton response of a proximal transition metal dichalcogenide layer. Through a systematic study of rhombohedral and rotationally faulted graphene bilayers and trilayers, we show that when the semiconducting dichalcogenide is in direct contact with the graphene, the exciton response is most sensitive to the large momentum rearrangement of the Fermi surface, providing information that is distinct from and complementary to electrical compressibility measurements. The wide-field imaging capability of optical probes allows us to obtain spatial maps of flavor order with high throughput, and with broad temperature and device compatibility. Our work helps pave the way for optical probing and imaging of flavor orders in flat band graphene systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218313 | PMC |
http://dx.doi.org/10.1038/s41467-025-60675-8 | DOI Listing |
Small
September 2025
Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
1D electronic structures on 2D crystalline surfaces are crucial for investigating low-dimensional quantum phenomena and enabling the development of dimensionally engineered nanodevices. However, the inherent periodic symmetry of 2D atomic lattices generally leads to delocalized electronic band extending across the surface, making the creation of periodic 1D electronic states a significant challenge. Here, robust 1D electronic ordering is demonstrated in ultrathin Mn films grown on an atomically flat, non-reconstructed body-centered cubic Fe substrate.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2025
Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece.
The present work elucidates the role of lattice oxygen vacancies (Vs) in SrTiO (STO) nanoparticles on the spin dynamics of photogenerated charge carriers (electrons/holes, e/h) and on the photocatalytic hydrogen (H) evolution from HO. V-enriched STO materials (V-STO) were synthesized via anoxic flame spray pyrolysis (A-FSP) technology that allowed production of a library of SrTiO nanomaterials with controlled V concentrations. The optimal V-STO materials exhibited a 200% increase in photocatalytic H production rates compared with pristine STO.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Physics, Birla Institute of Technology and Science - Pilani Campus, Department of Physics, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, RJ, 333031, INDIA.
We investigate the transport properties of a two-dimensional Su-Schrieffer-Heeger (2D SSH) model in the quantum Hall regime using non-equilibrium Green's function formalism (NEGF). The device Hamiltonian, where the 2D SSH model serves as the channel, is constructed using a nearest-neighbor tight-binding model. The effect of an external perpendicular magnetic field is incorporated into the contacts via Peierls substitution.
View Article and Find Full Text PDFSci Rep
August 2025
Institute of Quantum Information Technology, Yonsei University, Seoul, 03722, Korea.
In this study, we investigate various geometric aspects of a photonic hexagonal lattice made of triple-leg stripline resonators (TSRs) in a circuit QED system. The inherent two-fold degenerate spatial modes of the TSR act as two distinct orbitals in our 2D lattice system. Remarkably the energy spectra of the system exhibits the dispersive quadratic band-touching to the top and bottom flat bands.
View Article and Find Full Text PDFMicromachines (Basel)
July 2025
School of Microelectronics, Xidian University, Xi'an 710126, China.
This paper introduces a 0.5-5.8 GHz low-noise amplifier (LNA) incorporating a gyrator-C-based active inductor (AI) and an enhanced deep trench isolation (DTI) electrostatic discharge (ESD) diode.
View Article and Find Full Text PDF