Warming-induced unstable microbial community metabolically lowers straw-carbon sequestration in paddy soils.

J Adv Res

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Growing academic attention has been given to the crucial role of soil microorganisms in the net loss of soil organic carbon (SOC) under climate warming and the effectiveness of straw-C sequestration to replenish the SOC stock. However, the lack of empirical investigations in anaerobic paddy soils hinders accurate estimation of the global soil C-climate feedback and development of countermeasures.

Objectives: This study aimed to unravel the impact of warming on the complexity of the microbial community network of the paddy soil in response to warming, and correspondent changes of microbial metabolic functions relevant to the transformation of straw-C in SOC pools.

Methods: We added C/N-labeled rice straw into a long-term paddy soil and incubated under three temperature treatments (25, 35 and 45 °C) for 140 days to quantify straw-C sequestration in various SOC fractions, and further deployed metagenomic sequencing and solid-state C NMR analyses to explore relevant biochemical mechanisms.

Results: Warming (35 °C and 45 °C vs. 25 °C) enhanced SOC decomposition, but straw amendment did not replenish the loss C in mineral-associated C, a major SOC fraction of this soil, especially at 45 °C. Compared to 25 °C, temperature increases to 35 °C and 45 °C led to decreases in microbial diversity indices by an average of 19 % and 43 %, respectively. Warming also destabilized the microbial community network with less connectivity and keystone nodes in the paddy soil. Furthermore, warming decreased the abundances of organic C- and N-mineralization genes. Those genes encode enzymes involved in the degradation of both labile and recalcitrant organic compounds, including starch, cellulose, hemicellulose, chitin, pectin and aromatics, as well as in N mineralization, such as glutamate dehydrogenase and glutamate synthase. A subsequent deficiency in the synthesis of those enzymes appeared to suppress the transformation of straw-C and N, thereby reducing their sequestration efficiency in the mineral-associated C fraction in the paddy soil.

Conclusion: The detrimental impact of warming on the microbial metabolic profiles lowered the role of straw amendment in sustaining SOC stability under warming. An improved understanding of the warming-induced loss of microbial community diversity and correspondent weakening metabolic functions for the turnover of exogenous C should be accounted for global mitigation practices in paddy fields under climate warming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2025.06.075DOI Listing

Publication Analysis

Top Keywords

microbial community
16
paddy soil
12
warming
9
paddy soils
8
climate warming
8
straw-c sequestration
8
impact warming
8
community network
8
microbial metabolic
8
metabolic functions
8

Similar Publications

Arbuscular mycorrhizal fungi distribution responds to ecological damage characteristics in antimony mining ecosystems.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.

The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.

View Article and Find Full Text PDF

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

Vδ1 γδ T cells are key players in innate and adaptive immunity, particularly at mucosal interfaces such as the gut. An increase in circulating Vδ1 cells has long been observed in people with HIV-1, but remains poorly understood. We performed a comprehensive characterization of Vδ1 T cells in blood and duodenal intra-epithelial lymphocytes, obtained from endoscopic mucosal biopsies of 15 people with HIV-1 on antiretroviral therapy and 15 HIV-seronegative controls, in a substudy of the ANRS EP61 GALT study (NCT02906137).

View Article and Find Full Text PDF

Background: The gut microbiota produces numerous metabolites that can enter the circulation and exert effects outside the gut. Several studies have reported altered gut microbiota composition and circulating metabolites in patients with chronic heart failure (HF) compared to healthy controls. Limited data is available on the interplay between dysbiotic features of the gut microbiota and altered circulating metabolites in HF patients.

View Article and Find Full Text PDF

Breaking the reproducibility barrier with standardized protocols for plant-microbiome research.

PLoS Biol

September 2025

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Inter-laboratory replicability is crucial yet challenging in microbiome research. Leveraging microbiomes to promote soil health and plant growth requires understanding underlying molecular mechanisms using reproducible experimental systems. In a global collaborative effort involving five laboratories, we aimed to help advance reproducibility in microbiome studies by testing our ability to replicate synthetic community assembly experiments.

View Article and Find Full Text PDF