MicroRNA-361-3p Regulates Autophagy and Apoptotic Processes by Regulating PI3K/Akt Signaling in Parkinson's Disease.

Neurochem Res

Department of Neurology, The First Affiliated Hospital of Lishui College, Lishui People's Hospital, No.15, Dazhong Street, Lishui, 323000, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs are closely related to the pathogenesis of Parkinson's disease (PD). The purpose of this study was to explore the effects of microRNA (miR)-361-3p on apoptosis and autophagy in 1-methyl-4-phenylpyridinium ion (MPP) induced PD cell models, and its potential mechanisms. SH-SY5Y cells were induced by 1.0 mM MPP for 24 h to establish a PD cell model in vitro, and the expression level of miR-361-3p was regulated by cell transfection. Cell viability was detected by the Cell Count Kit (CCK)-8 method. Apoptosis was evaluated by flow cytometry. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). The changes of autophagy-associated proteins (Beclin 1, LC3I, and LC3II) and PI3K/Akt signaling pathway-associated proteins (p-PI3K and p-Akt) were detected by Western blot. The target genes of miR-361-3p were predicted and functionally annotated by the bioinformatics method. The interaction between miR-361-3p and its target gene PFKFB3 was verified by the luciferase reporter gene. With the increase of MPP concentrations, the expression level of miR-361-3p and cell viability decreased gradually. In MPP induced SH-SY5Y cells, upregulation of miR-361-3p significantly improved cell survival and reduced apoptosis, while downregulating autophagy protein Beclin 1, LC3II/LC3I ratio, and increasing proteins p-PI3K/PI3K and p-Akt/Akt ratio. In addition, upregulation of miR-361-3p inhibited the expression of PFKFB3, while further overexpression of PFKFB3 negated the protective effect of miR-361-3p overexpression on MPP induced cells. This study showed that miR-361-3p was reduced in the PD cell model, and overexpression of miR-361-3p inhibited PD damage by regulating PFKFB3 and activating the PI3K/Akt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-025-04435-6DOI Listing

Publication Analysis

Top Keywords

pi3k/akt signaling
12
mpp induced
12
mir-361-3p
10
parkinson's disease
8
cell
8
sh-sy5y cells
8
cell model
8
expression level
8
level mir-361-3p
8
cell viability
8

Similar Publications

Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Objective: This study aimed to investigate comorbidity patterns and potential pathogenic mechanisms in patients with Hashimoto's thyroiditis (HT).

Methods: Patients with HT who visited the outpatient clinic of the Thyroid Department at Dongzhimen Hospital, Beijing University of Chinese Medicine, between June 2021 and December 2024 were included. Association rule analysis and logistic regression analysis were performed using SPSS 25.

View Article and Find Full Text PDF

Unraveling the Pivotal Role of LncRNA DUXAP9 in Cancer: Current Progress and Future Perspectives.

Curr Drug Targets

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.

View Article and Find Full Text PDF

Ethnopharmacology Relevance: Tangningtongluo Tablets (TNTL), a novel Miao ethnic medicine for treating type 2 diabetes mellitus (T2DM) and its complications. However, its potential bioactive components and the pharmacological mechanisms underlying its therapeutic effects remain unclear.

Aim Of The Study: This study aims to preliminarily explore the protective effects of TNTL and its active components on pancreatic cells via the PI3K/Akt/FoxO1 pathway and further investigate the underlying mechanisms.

View Article and Find Full Text PDF