98%
921
2 minutes
20
Nano-zero-valent iron (nZVI) is commonly used as a reactive material for trichloro-ethylene (TCE) remediation in groundwater systems, and the long-term removal capacity serves as a critical indicator for evaluating the material efficacy. In this study, a novel sustained-release iron-carbon composite (BC@nZVI-βCD) was synthesized by the integration of biochar (BC) matrix and β-cyclodextrin (βCD) encapsulation, and the materials before and after modification were analyzed by various characterization methods. Subsequently, the kinetics of TCE removal by different materials were investigated, and the sustained-release properties of BC@nZVI-βCD were explored by batch and column experiments. Finally, the long-term TCE removal mechanism was discussed carefully. The results showed that the incorporation of BC increased the specific surface area and dispersion of nZVI, while βCD successfully encapsulated nZVI and formed abundant nanocracks on the surface. The removal of TCE by BC@nZVI-βCD was in accordance with the pseudo-second-order kinetic equation, and the removal rate of TCE was as high as 97 % within 3 h, and 92.7 % of TCE was degraded within 14 d. Moreover, BC@nZVI-βCD maintained a stable removal efficiency of TCE in long-term sand column experiments, with the removal rate remaining above 94 % for the first 32 d, and the removal rate also reached 78.6 % by 86 d. In conclusion, the synergistic effect of both BC and βCD breaks through the limitation of pure nZVI, improves the sustained-release performance of the BC@nZVI-βCD composite and the degradation effect of TCE, which can have great application prospects on the long-term remediation of TCE contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.122222 | DOI Listing |
Environ Sci Technol
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
Arsenic (As) is a prevalent toxic element, posing significant risks to organisms, including microbes. While microbial arsenic detoxification has been extensively studied in bacteria, archaeal mechanisms remain understudied. Here, we investigated arsenic resistance genes in , one of the most abundant archaeal lineages on Earth.
View Article and Find Full Text PDFDrug Dev Res
September 2025
Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int
In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
The coastal mixing zone between seawater and freshwater is a critical interface for the exchange and transformation of contaminants. Despite its significance, the influence of seawater intrusion angle on contaminant transport has been largely overlooked. In this study, we combine laboratory column experiments with reactive transport modeling to investigate how varying seawater intrusion angles affect chromium (Cr) migration, particularly in colloid-facilitated forms.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.
View Article and Find Full Text PDF