98%
921
2 minutes
20
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage capabilities. In this work, a microsphere-like structured PANI-based composite film was fabricated on a porous Au/nylon 66 electrode via a one-step electrochemical copolymerization process, using 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) as both the dopant and cross-linking agent for the PANI backbone, serving as the ECSC electrode. Compared to the pristine PANI electrode, the PANI-PTSA composite film exhibits lower intrinsic resistance and higher electrical conductivity, delivering a higher specific capacitance of 310.0 F g⁻@1 A g⁻ and an areal capacitance of 340.0 mF cm⁻@1 mA cm⁻, respectively. The dopant facilitates enhanced electrochemical performance by promoting charge transport within the PANI polymer network. Meanwhile, as a counter anion to the PANI backbone, PTSA regulates the growth of PANI chains and acts as a morphological controller. Furthermore, a symmetric ECSC based on the PANI-PTSA electrode was assembled, and its electrochemical properties were thoroughly investigated. The device demonstrated a high specific capacitance of 169.2 mF cm⁻ at 1 mA cm⁻, a notable energy density of 23.5 μWh cm⁻ at a power density of 0.5 mW cm⁻, and excellent cycling stability with 79% capacitance retention after 3000 cycles at a current density of 5 mA cm⁻, alongside remarkable mechanical flexibility. Additionally, the working status of the ECSCs can be directly monitored through reversible color changes from yellow-green to deep blue during charge-discharge processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195107 | PMC |
http://dx.doi.org/10.3390/ma18122836 | DOI Listing |
Immunol Invest
September 2025
Department of Function, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, China.
Objective: This study aims to elucidate how butyrate, a short-chain fatty acid, regulates the Treg/Th17 balance in ulcerative colitis (UC) via the cAMP-PKA/mTOR signaling pathway, offering novel treatment strategies.
Methods: Dextran sulfate sodium (DSS) was used to induce ulcerative colitis in a mouse model. Various butyrate dosages were administered to the mice.
Lung
September 2025
The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.
Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.
Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
FEBS J
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, USA.
Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.
View Article and Find Full Text PDF