Preliminary Electroencephalography-Based Assessment of Anxiety Using Machine Learning: A Pilot Study.

Brain Sci

Faculty of Mathematics and Information Technology, Lublin University of Technology, 20-618 Lublin, Poland.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Recent advancements in machine learning (ML) have significantly influenced the analysis of brain signals, particularly electroencephalography (EEG), enhancing the detection of complex neural patterns. ML enables large-scale data processing, offering novel opportunities for diagnosing and treating mental disorders. However, challenges such as data variability, noise, and model interpretability remain significant. This study reviews the current limitations of EEG-based anxiety detection and explores the potential of advanced AI models, including transformers and VAE-D2GAN, to improve diagnostic accuracy and real-time monitoring. : The paper presents the application of ML algorithms, with a focus on convolutional neural networks (CNN) and recurrent neural networks (RNN), in identifying biomarkers of anxiety disorders and predicting therapy responses. Additionally, it discusses the role of brain-computer interfaces (BCIs) in assisting individuals with disabilities by enabling device control through brain activity. : Experimental EEG research on BCI applications was conducted, focusing on motor imagery-based brain activity. Findings indicate that successive training sessions improve signal classification accuracy, emphasizing the need for personalized and adaptive EEG analysis methods. Challenges in BCI usability and technological constraints in EEG processing are also addressed. : By integrating ML with EEG analysis, this study highlights the potential for future healthcare applications, including neurorehabilitation, anxiety disorder therapy, and predictive clinical models. Future research should focus on optimizing ML algorithms, enhancing personalization, and addressing ethical concerns related to patient privacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190515PMC
http://dx.doi.org/10.3390/brainsci15060571DOI Listing

Publication Analysis

Top Keywords

machine learning
8
neural networks
8
brain activity
8
eeg analysis
8
eeg
5
preliminary electroencephalography-based
4
electroencephalography-based assessment
4
anxiety
4
assessment anxiety
4
anxiety machine
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF