98%
921
2 minutes
20
Malignant tumors of the digestive system are widespread and pose a serious threat to humans. Immune escape is an important factor promoting the deterioration of malignant tumors in the digestive system. Natural killer cells (NK cells) are key members of the anti-tumor and immune surveillance system, mainly exerting cytotoxic effects by binding to the activating receptor natural killer cell group 2D (NKG2D) on their cell surface with the corresponding ligands (major histocompatibility complex class I chain-related protein A/B, MICA/B) on the surface of tumor cells. Malignant tumors of epithelial origin usually highly express NKG2D ligands such as MICA, which can attract NK cells to kill tumor cells and also serve as an important basis for NK cell-based immunotherapy. Tumor cells highly express hypoxia-inducible factor-1α (HIF-1α), which promotes the expression of matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). These metalloproteinases hydrolyze MICA and other ligands on the surface of tumor cells to generate soluble molecules. These soluble ligands, when binding to NKG2D, cannot activate NK cells and also block the binding of NKG2D to MICA on the surface of tumor cells, enabling tumor cells to evade the killing effect of NK cells. Almost all organs in the digestive system originate from epithelial tissue, so the soluble ligands generated by the HIF-1α/MMPs or HIF-1α/ADAMs signaling pathways play a crucial role in evading NK cell killing. A comprehensive understanding of this immune escape process is helpful for a deeper understanding of the molecular mechanism of NK cell anti-tumor activity. This article reviews the molecular mechanisms of common digestive system malignancies evading NK cell killing, providing new insights into the mechanism of tumor immune escape.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190188 | PMC |
http://dx.doi.org/10.3390/biom15060899 | DOI Listing |
Nano Lett
September 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.
Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.
View Article and Find Full Text PDFMol Biol Rep
September 2025
College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.
View Article and Find Full Text PDFDig Dis Sci
September 2025
Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.
Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.
Med Oncol
September 2025
Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDF