Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lycopene, a natural pigment, is valuable for human health because of its strong antioxidant capacity. However, studies on the involvement of tomato miR394 in the regulation of lycopene have not been reported. The aim of this study was to reveal the molecular mechanism by which miR394 regulates lycopene synthesis by targeting ζ-carotene dehydrogenase (). The miR394-silenced transgenic tomato plants were constructed by short tandem target mimicry (STTM) technology, and the association between lycopene content and antioxidant capacity was analyzed by combining qRT-PCR, UV spectrophotometry, and a free radical scavenging assay. The targeting relationship between miR394 and was verified using a subcellular localization assay. The results showed that the silencing of miR394 significantly upregulated the expression of the ZDS gene and promoted lycopene accumulation. The antioxidant enzyme activities of STTM394 transgenic plants were significantly enhanced, and the free radical scavenging ability was obviously improved. Subcellular localization experiments confirmed that miR394 directly inhibited the chloroplast expression of . In conclusion, this study reveals for the first time that the miR394-ZDS module enhances the antioxidant capacity by regulating lycopene metabolism, which provides a new target for themolecular breeding of highly nutritious tomatoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190374PMC
http://dx.doi.org/10.3390/biom15060857DOI Listing

Publication Analysis

Top Keywords

antioxidant capacity
16
module enhances
8
enhances antioxidant
8
lycopene synthesis
8
free radical
8
radical scavenging
8
subcellular localization
8
lycopene
7
antioxidant
5
mir394
5

Similar Publications

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF

This study investigated the inhibitory effect of sucrose on the autolysis of recombinant Bacillus subtilis WB600 during keratinase production and elucidated its mechanism. Growth curves, cell morphology observations, cell wall integrity detection, and transcriptome analysis revealed that 2 % sucrose significantly increased cell biomass and delayed autolysis. Keratinase activity reached 5670.

View Article and Find Full Text PDF

α-Lipoic acid treatment alleviates chilling injury in peach fruit by regulating phenolic and cell wall metabolism.

Plant Sci

September 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

Peaches are highly susceptible to chilling injury (CI) during cold storage, which significantly compromises their postharvest quality. While α-lipoic acid (α-LA) shows promise in extending the shelf life of fruits and vegetables, its role in mitigating CI in peaches remains unexplored. In this study, postharvest peaches were treated with 0.

View Article and Find Full Text PDF