Phosphocreatine Rescues Intestinal Epithelial Metabolic Dysfunction Related to Creatine Kinase Loss and Is Protective in Murine Colitis.

Cell Mol Gastroenterol Hepatol

Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado; Division of Gastroenterology and Hepatology, Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado. Electronic address: Caroline.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background & Aims: Inflammatory bowel disease is associated with intestinal energetic derangements, including reduced creatine kinase (CK) expression. CK is critical to cellular energetics, catalyzing bidirectional transfer of high-energy phosphate between creatine and ATP, and phosphocreatine (PCr) and ADP. However, the impact of CK loss on intestinal epithelial cells (IECs) remains unclear. We aimed to characterize energetic and functional consequences of CK deficiency in IECs and identify a treatment to circumvent CK loss.

Methods: The CK-brain isoform was knocked down (CKB KD) in T84 cells. Colonoids were derived from CK-brain/mitochondrial isoform knockout (CK dKO) mice. Cell lines were characterized by quantitative polymerase chain reaction, immunoblot, high-performance liquid chromatograph, Seahorse assays, transepithelial electrical resistance, wound healing, immunofluorescence, and proliferation assays, and in the presence of supplemental PCr. CK dKO mice treated with PCr in the setting of colitis were evaluated by clinical and histologic disease scoring.

Results: CKB KD T84s and CK dKO colonoids demonstrated signs of energy deficiency, including reduced ATP levels and oxidative phosphorylation capacity. This was associated with diminished IEC function, most notably proliferation, and impaired barrier formation and scratch-wound healing. Supplementing PCr normalized ATP levels, proliferation, and barrier formation. Oral PCr supplementation during murine colitis resulted in improved disease activity.

Conclusions: Loss of CK, a change that occurs in inflammatory bowel disease, causes defective energy metabolism and IEC functioning. PCr supplementation rescues many detrimental effects of CK loss and serves as a protective mechanism in murine colitis. These findings may provide insight into pathogenic mechanisms and a novel therapeutic modality in inflammatory bowel disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405633PMC
http://dx.doi.org/10.1016/j.jcmgh.2025.101557DOI Listing

Publication Analysis

Top Keywords

murine colitis
12
inflammatory bowel
12
bowel disease
12
intestinal epithelial
8
creatine kinase
8
including reduced
8
dko mice
8
atp levels
8
barrier formation
8
pcr supplementation
8

Similar Publications

Objective: This study aims to elucidate how butyrate, a short-chain fatty acid, regulates the Treg/Th17 balance in ulcerative colitis (UC) via the cAMP-PKA/mTOR signaling pathway, offering novel treatment strategies.

Methods: Dextran sulfate sodium (DSS) was used to induce ulcerative colitis in a mouse model. Various butyrate dosages were administered to the mice.

View Article and Find Full Text PDF

Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by disruption of intestinal barrier function and complex inflammatory manifestations locally and systemically. Although anti-tumor necrosis factor-α (TNF-α) agents such as Infliximab (IFX) are effective in treating IBD, their intestinal tissue concentration has been regarded as determinant of therapeutic efficacy while was restrained by the large molecular weight. Considering the enhanced expression of human neonatal Fc receptor (hFcRn) in UC tissues, we attempted to deliver the therapeutic entity of IFX into UC tissues by developing a novel dual-acting IFX Fab-F8 (IFX-F8) fusion protein for UC treatment.

View Article and Find Full Text PDF

Antibacterial hyaluronic acid hydrogel with sustained release of larazotide as effective colitis treatment.

J Control Release

September 2025

Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China. Electronic address:

Gut barrier loss exacerbated gut microbiota dysbiosis by permitting pathogenic blooms, while gut microbiota dysbiosis caused the development of gut mucosal wounds by reducing mucus and breaking down epithelial tight junction. Current therapies combating colitis often fail to address both gut barrier dysfunction and microbial imbalance. Herein, inspired by natural gut mucus, a dual-crosslinked hydrogel (HSMP-LA) composed of thiol/maleimide-modified hyaluronic acid together with co-loading of antimicrobial ε-polylysine (ε-PL) and larazotide acetate (LA) had been developed as an injectable artificial gut mucus to simultaneously restore barrier integrity and modulate gut microbiota.

View Article and Find Full Text PDF

The aim was to investigate the pharmacological effects of a polysaccharide isolated from Pleurotus citrinopileatus on ulcerative colitis (UC). One polysaccharide, CP-2-2, was isolated and purified from P. citrinopileatus body fruit using chromatographic methods.

View Article and Find Full Text PDF

Premna microphylla Turcz pectin-modified diosmetin nanoparticles: A galectin-3 targeting strategy for precise colitis intervention.

Carbohydr Polym

November 2025

Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

Oral delivery of natural antioxidants represents a promising therapeutic strategy for ulcerative colitis (UC), yet their therapeutic efficacy is hindered by instability and poor accumulation at inflamed sites. To address this, we developed Galectin-3 (Gal-3)-targeted nanoparticles (ZDP-NPs) by encapsulating diosmetin within zein complexes modified with a galactose- and rhamnogalacturonan-I (RG-I)-rich pectin (PMTP, Mw: 228.8 kDa, DM: 34.

View Article and Find Full Text PDF