Publications by authors named "Sean P Colgan"

In a recent publication, Lesbats et al uncover the molecular fate of phagocytosed bacterial contents. The authors observed incorporation of bacterial biomolecules (amino acids, metabolites) into those of the host macrophage through stable isotope labeling and mass spectrometry. Further, the authors found that the state of the phagocytosed bacteria, living or dead, dramatically alters the macrophage's metabolic program toward either a pro-inflammatory or a "recycling" direction, respectively.

View Article and Find Full Text PDF

Background & Aims: Inflammatory bowel disease is associated with intestinal energetic derangements, including reduced creatine kinase (CK) expression. CK is critical to cellular energetics, catalyzing bidirectional transfer of high-energy phosphate between creatine and ATP, and phosphocreatine (PCr) and ADP. However, the impact of CK loss on intestinal epithelial cells (IECs) remains unclear.

View Article and Find Full Text PDF

The gastrointestinal tract is home to trillions of microorganisms that interact with their host in profound ways, including regulation of immune, endocrine, and neurological functions. One mechanism by which these microbes interact with their eukaryotic host is through the generation of short-chain fatty acids (SCFAs), which are metabolized by the intestinal epithelium creating a state of "physiologic hypoxia". This hypoxia, in turn, results in stabilization and activation of hypoxia-inducible factor (HIF), a transcription factor family shown to support gut barrier function and homeostasis, in the intestinal epithelium.

View Article and Find Full Text PDF

The intestinal mucosa has evolved to facilitate interactions between the host and the constellation of intestinal microbes, collectively termed the microbiota. A well-orchestrated balance exists in the healthy mucosa where microbes and microbial products first encounter a barrier formed by a single layer of intestinal epithelial cells (IECs). This homeostasis exists at a harsh interface between the highly vascularized mucosa and the anaerobic intestinal lumen.

View Article and Find Full Text PDF

The gut microbiota transforms energy stored as undigestible carbohydrates into a remarkable number of metabolites that fuel intestinal bacterial communities and the host tissue. Colonic epithelial cells at the microbiota-host interface depend upon such microbiota-derived metabolites (MDMs) to satisfy their energy requisite. Microbial dysbiosis eliciting MDM loss contributes to barrier dysfunction and mucosal disease.

View Article and Find Full Text PDF

Introduction: The presence of micro- and nano-plastics (MNPLs) in the environment has increased significantly in the past decades. However, the direct impact of MNPL particles on human health remains unclear.

Methods: In this study, we utilized a modified extraction method with a previously reported staining technique to develop a novel approach for identifying individual plastics in mixtures of MNPLs of commercial and environmental origins to be able to investigate their impacts on human cell inflammation and cell death.

View Article and Find Full Text PDF

Background: Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis.

View Article and Find Full Text PDF

The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria.

View Article and Find Full Text PDF

Neutrophils (polymorphonuclear leukocytes, PMNs) comprise a major component of the immune cell infiltrate during acute mucosal inflammation and have an important role in molding the inflammatory tissue environment. While PMNs are essential to clearance of invading microbes, the major PMN antimicrobial enzyme myeloperoxidase (MPO) can also promote bystander tissue damage. We hypothesized that blocking MPO would attenuate acute colitis and prevent the development of chronic colitis by limiting bystander tissue damage.

View Article and Find Full Text PDF

Colorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing.

View Article and Find Full Text PDF

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence.

View Article and Find Full Text PDF

Background: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored.

View Article and Find Full Text PDF

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence.

View Article and Find Full Text PDF

Microbiota-derived short-chain fatty acids, including butyrate (BA), have multiple beneficial health effects. In the colon, BA concentrations range from 10 to 20 mM and up to 95% is utilized as energy by the mucosa. BA plays a key role in epithelial-barrier regulation and anti-inflammation, and regulates cell growth and differentiation, at least in part, due to its direct influence on stabilization of the transcription factor hypoxia-inducible factor (HIF).

View Article and Find Full Text PDF

Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model.

View Article and Find Full Text PDF

The liver can fully regenerate after partial resection, and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury, with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here, we demonstrate that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulated necrotic areas during immune-mediated liver injury and that this feature was essential in repairing necrotic lesions.

View Article and Find Full Text PDF

Inflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model.

View Article and Find Full Text PDF

Crohn disease (CD) is a highly morbid chronic inflammatory disease. Although many patients with CD also develop fibrostenosing complications, there are no medical therapies for intestinal fibrosis. This is due, in part, to a lack of high-fidelity biomimetic models to enhance understanding and drug development, which highlights the need for developing in vivo models of inflammatory bowel disease-related intestinal fibrosis.

View Article and Find Full Text PDF

Unlabelled: For many intracellular pathogens, their virulence depends on an ability to spread between cells of an epithelial layer. For intercellular spread to occur, these pathogens deform the plasma membrane into a protrusion structure that is engulfed by the neighboring cell. Although the polymerization of actin is essential for spread, how these pathogens manipulate the actin cytoskeleton in a manner that enables protrusion formation is still incompletely understood.

View Article and Find Full Text PDF

On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia.

View Article and Find Full Text PDF

Background & Aims: Crohn's disease (CD) is a highly morbid chronic inflammatory disease. The majority of CD patients also develop fibrostenosing complications. Despite this, there are no medical therapies for intestinal fibrosis.

View Article and Find Full Text PDF