Publications by authors named "Aimee L Anderson"

Pancreatic β-cells in pre-type 1 diabetes (T1D) experience stress due to islet inflammation, which accompanies early defects in insulin secretion that precede autoimmune destruction. One product of inflammatory stress is protein carbonylation (PC), brought on by reactive oxygen species (ROS) combining with lipids to produce reactive aldehydes such as 4-hydroxynonenal (4-HNE) that irreversibly modify Cys, His, and Lys sidechains. In this study, we used proteomics to measure patterns of PC in pancreatic islets from 10-week-old pre-diabetic NOD mice and in cultured insulin-secreting cells treated with either 4-HNE or pro-inflammatory cytokines.

View Article and Find Full Text PDF

Background: Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis.

View Article and Find Full Text PDF

We have developed a mouse model of parenteral nutrition-associated liver disease (PNALD) in which parenteral nutrition (PN) infusion results in cholestatic liver injury. In the liver, the master circadian genes /Bmal drive rhythmic gene expression and regulate circadian expression of hepatic functions including bile acid synthesis. The aim of this study was to examine the effect of continuous PN on ileal and hepatic expression of circadian regulatory (CR) genes, farnesoid X receptor (FXR) signaling, and bile acid synthesis in mice.

View Article and Find Full Text PDF

Background: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2).

View Article and Find Full Text PDF

Background And Aims: Parenteral nutrition (PN) in patients with intestinal failure can lead to cholestasis (PNAC). In a PNAC mouse model, farnesoid X receptor (FXR) agonist (GW4064) treatment alleviated IL-1β-dependent cholestatic liver injury. The objective of this study was to determine whether this hepatic protection of FXR activation is mediated through IL-6-STAT3 signaling.

View Article and Find Full Text PDF

Background And Aims: Cholestatic liver diseases, including primary sclerosing cholangitis, are characterized by periportal inflammation with progression to hepatic fibrosis and ultimately cirrhosis. We recently reported that the thioredoxin antioxidant response is dysregulated during primary sclerosing cholangitis. The objective of this study was to examine the impact of genetic and pharmacological targeting of thioredoxin reductase 1 (TrxR1) on hepatic inflammation and liver injury during acute cholestatic injury.

View Article and Find Full Text PDF

Inflammatory cholestatic liver diseases, including Primary Sclerosing Cholangitis (PSC), are characterized by periportal inflammation with progression to cirrhosis. The objective of this study was to examine interactions between oxidative stress and autophagy in cholestasis. Using hepatic tissue from male acute cholestatic (bile duct ligated) as well as chronic cholestatic (Mdr2KO) mice, localization of oxidative stress, the antioxidant response and induction of autophagy were analyzed and compared to human PSC liver.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a mouse model to study parenteral nutrition-associated cholestasis (PNAC), demonstrating that intestinal inflammation combined with parenteral nutrition (PN) leads to liver issues and transporter gene suppression.
  • The study examined the role of TNFα, finding that it suppresses important liver transporters and is elevated in cases of PNAC.
  • Treatment with infliximab (a drug targeting TNFα) prevented the progression of PNAC, suggesting that targeting TNFα could be a potential therapy for this condition.
View Article and Find Full Text PDF

Background And Aims: Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1β derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model.

View Article and Find Full Text PDF

Background And Aims: Chronically administered parenteral nutrition (PN) in patients with intestinal failure carries the risk for developing PN-associated cholestasis (PNAC). We have demonstrated that farnesoid X receptor (FXR) and liver X receptor (LXR), proinflammatory interleukin-1 beta (IL-1β), and infused phytosterols are important in murine PNAC pathogenesis. In this study we examined the role of nuclear receptor liver receptor homolog 1 (LRH-1) and phytosterols in PNAC.

View Article and Find Full Text PDF

Treatment options for liver metastases (primarily colorectal cancer) are limited by high recurrence rates and persistent tumor progression. Surgical approaches to management of these metastases typically use heat energy including electrocautery, argon beam coagulation, thermal ablation of surgical margins for hemostasis, and preemptive thermal ablation to prevent bleeding or to effect tumor destruction. Based on high rates of local recurrence, these studies assess whether local effects of hepatic thermal injury (HTI) might contribute to poor outcomes by promoting a hepatic microenvironment favorable for tumor engraftment or progression due to induction of procancer cytokines and deleterious immune infiltrates at the site of thermal injury.

View Article and Find Full Text PDF

In infants intolerant of enteral feeding because of intestinal disease, parenteral nutrition may be associated with cholestasis, which can progress to end-stage liver disease. Here we show the function of hepatic macrophages and phytosterols in parenteral nutrition-associated cholestasis (PNAC) pathogenesis using a mouse model that recapitulates the human pathophysiology and combines intestinal injury with parenteral nutrition. We combine genetic, molecular, and pharmacological approaches to identify an essential function of hepatic macrophages and IL-1β in PNAC.

View Article and Find Full Text PDF

Increasingly, evidence suggests that exposure to maternal obesity creates an inflammatory environment , exerting long-lasting postnatal signatures on the juvenile innate immune system and microbiome that may predispose offspring to development of fatty liver disease. We found that exposure to a maternal Western-style diet (WD) accelerated fibrogenesis in the liver of offspring and was associated with early recruitment of proinflammatory macrophages at 8-12 weeks and microbial dysbiosis as early as 3 weeks of age. We further demonstrated that bone marrow-derived macrophages (BMDMs) were polarized toward an inflammatory state at 8 weeks of age and that a potent antioxidant, pyrroloquinoline quinone (PQQ), reversed BMDM metabolic reprogramming from glycolytic toward oxidative metabolism by restoring trichloroacetic acid cycle function at isocitrate dehydrogenase.

View Article and Find Full Text PDF

Elevated serum concentrations of the vasoactive protein endothelin-1 (ET-1) occur in the setting of systemic inflammatory response syndrome and contribute to distal organ hypoperfusion and pulmonary hypertension. Thus, understanding the cellular source and transcriptional regulation of systemic inflammatory stress-induced ET-1 expression may reveal therapeutic targets. Using a murine model of LPS-induced septic shock, we demonstrate that the hepatic macrophage is the primary source of elevated circulating ET-1, rather than the endothelium as previously proposed.

View Article and Find Full Text PDF

Background: Parenteral nutrition (PN) has been a life-saving treatment in infants intolerant of enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI) in a significant number of PN-dependent infants. We have previously reported a novel PNALI mouse model in which PN infusion combined with intestinal injury results in liver injury.

View Article and Find Full Text PDF

Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation.

View Article and Find Full Text PDF

Parenteral nutrition-associated liver disease (PNALD) is a serious complication of PN in infants who do not tolerate enteral feedings, especially those with acquired or congenital intestinal diseases. Yet, the mechanisms underlying PNALD are poorly understood. It has been suggested that a component of soy oil (SO) lipid emulsions in PN solutions, such as plant sterols (phytosterols), may be responsible for PNALD, and that use of fish oil (FO)-based lipid emulsions may be protective.

View Article and Find Full Text PDF

Unlabelled: Infants with intestinal failure who are parenteral nutrition (PN)-dependent may develop cholestatic liver injury and cirrhosis (PN-associated liver injury: PNALI). The pathogenesis of PNALI remains incompletely understood. We hypothesized that intestinal injury with increased intestinal permeability combined with administration of PN promotes lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4) signaling dependent Kupffer cell (KC) activation as an early event in the pathogenesis of PNALI.

View Article and Find Full Text PDF

Treatment with alpha interferon is a standard therapy for patients with chronic hepatitis B virus (HBV) infections. This treatment can reduce virus load and ameliorate disease symptoms. However, in the majority of cases, alpha interferon therapy fails to resolve the chronic HBV infection.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) transgenic mice expressing rat hepatocyte nuclear factor 3beta (HNF3beta) were generated by breeding HBV transgenic mice with transgenic mice that constitutively overexpress the rat HNF3beta polypeptide in the liver. HBV 3.5-, 2.

View Article and Find Full Text PDF