Publications by authors named "Jacob E Friedman"

The cellular mechanisms underlying a greater risk of cardiometabolic disease in adult offspring exposed to maternal obesity are not known. Our prior work found reduced skeletal muscle mitochondrial metabolism and insulin sensitivity in offspring exposed to maternal (m) Western-style diet (WD), even when weaned onto a control diet (CD) in Japanese macaques. Here, we performed multiple comparisons of differentially expressed (DE) genes in skeletal muscle from lean juvenile offspring to test hypotheses specific to (1) the lasting effects of maternal diet composition and/or maternal adiposity on gene expression and (2) the transcriptional response to a chronic postweaning (pw)WD with and without prior exposure to mWD.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by the accumulation of fats in the liver, chronic inflammation, hepatocytic ballooning, and fibrosis. This study investigates the significance of hepatic aryl hydrocarbon receptor (AhR) signaling in cinnabarinic acid (CA)-mediated protection against MASH. Here, we report that livers of high-fat, high-fructose, high-cholesterol diet-fed hepatocyte-specific aryl hydrocarbon receptor knockout mice (AhR-hKO) exhibited aggravated steatosis, inflammation, and fibrosis compared with control AhR-floxed livers.

View Article and Find Full Text PDF

Due to the growing obesity epidemic in the United States, it is now estimated that approximately one third of all children are born to obese moms. These data, coupled with data indicating that obesity is associated with accelerated cyst growth in patients with autosomal dominant polycystic kidney disease (ADPKD), led us to hypothesize that maternal obesity may influence the rate of disease progression in offspring. To test this hypothesis, we induced maternal obesity by high-fat diet (HFD) feeding in the orthologous mouse model of ADPKD and followed polycystic kidney disease (PKD) progression in offspring for up to 1 year.

View Article and Find Full Text PDF

Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.

Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.

Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.

View Article and Find Full Text PDF

Objective: To evaluate the label accuracy of commercial infant probiotic products and identify potential microbial contamination.

Methods: DNA was extracted from seventeen infant probiotic products purchased from a large online vendor. Samples underwent 16S ribosomal RNA gene sequencing, QIIME analysis, and bacterial taxonomic classification.

View Article and Find Full Text PDF

Background: Fasting glucose is higher in pregnancies with obesity (OB); less is known about postprandial (PP) and nocturnal patterns when the diet is eucaloric and fixed or about the continuous-glucose-monitor (CGM) metrics that predict neonatal adiposity (NB%fat). We hypothesized that continuous glucose monitors (CGMs) would reveal higher glycemia in OB vs. normal weight (NW) during (14-16 weeks) and (26-28 weeks) gestation despite macronutrient-controlled eucaloric diets and elucidate unique predictors of NB%fat.

View Article and Find Full Text PDF

Introduction: Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio and insulin hyper-secretion Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) triggers alterations in the maternal microbiome. Alongside metabolic shifts, microbial products may impact clinical factors and influence pregnancy outcomes. We investigated maternal microbiome-metabolomic changes, including over 600 metabolites from a subset of the "Choosing Healthy Options in Carbohydrate Energy" (CHOICE) study.

View Article and Find Full Text PDF

Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of in GF offspring.

View Article and Find Full Text PDF

Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life.

View Article and Find Full Text PDF

Background: In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and (most recently) preeclampsia. However, with its expanded use, concerns of unintended harm have been raised.

Objective: This study developed an experimental primate model and applied ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology.

View Article and Find Full Text PDF

Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet, had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet.

View Article and Find Full Text PDF

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined.

View Article and Find Full Text PDF

Studying fetal hematopoiesis is challenging as hematopoiesis transitions from the liver to bone marrow. Obtaining human samples is not possible, and small animal models may not provide sufficient biological material. Here, we present a protocol for isolating hematopoietic cells from the nonhuman primate fetal liver and bone.

View Article and Find Full Text PDF

Background: Non-alcoholic fatty liver disease (NAFLD) is on the rise among youth. Identifying biomarkers of NAFLD progression/risk can aid in prevention efforts.

Aims: This pilot study investigated associations of two endotoxin biomarkers-lipopolysaccharide-binding protein (LBP) and anti-endotoxin core immunoglobulin G (EndoCab)-with markers of NAFLD among 99 Latino/Latina adolescents (11-19 years) with obesity.

View Article and Find Full Text PDF

Objective: Fetal exposures may impact offspring epigenetic signatures and adiposity. The authors hypothesized that maternal metabolic traits associate with cord blood DNA methylation, which, in turn, associates with child adiposity.

Methods: Fasting serum was obtained in 588 pregnant women (27-34 weeks' gestation), and insulin, glucose, high-density lipoprotein cholesterol, triglycerides, and free fatty acids were measured.

View Article and Find Full Text PDF

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls.

View Article and Find Full Text PDF

Unlabelled: Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD).

View Article and Find Full Text PDF

Objective: Nutrition therapy for gestational diabetes mellitus (GDM) has conventionally focused on carbohydrate restriction. In a randomized controlled trial (RCT), we tested the hypothesis that a diet (all meals provided) with liberalized complex carbohydrate (60%) and lower fat (25%) (CHOICE diet) could improve maternal insulin resistance and 24-h glycemia, resulting in reduced newborn adiposity (NB%fat; powered outcome) versus a conventional lower-carbohydrate (40%) and higher-fat (45%) (LC/CONV) diet.

Research Design And Methods: After diagnosis (at ∼28-30 weeks' gestation), 59 women with diet-controlled GDM (mean ± SEM; BMI 32 ± 1 kg/m2) were randomized to a provided LC/CONV or CHOICE diet (BMI-matched calories) through delivery.

View Article and Find Full Text PDF

Unlabelled: Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques.

View Article and Find Full Text PDF

Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty liver disease.

View Article and Find Full Text PDF

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model.

View Article and Find Full Text PDF

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver.

View Article and Find Full Text PDF

Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning.

View Article and Find Full Text PDF

Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. , APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein.

View Article and Find Full Text PDF