Am J Physiol Gastrointest Liver Physiol
April 2025
Metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by the accumulation of fats in the liver, chronic inflammation, hepatocytic ballooning, and fibrosis. This study investigates the significance of hepatic aryl hydrocarbon receptor (AhR) signaling in cinnabarinic acid (CA)-mediated protection against MASH. Here, we report that livers of high-fat, high-fructose, high-cholesterol diet-fed hepatocyte-specific aryl hydrocarbon receptor knockout mice (AhR-hKO) exhibited aggravated steatosis, inflammation, and fibrosis compared with control AhR-floxed livers.
View Article and Find Full Text PDFJ Nanobiotechnology
August 2024
J Pharmacol Exp Ther
July 2024
MAP4K4 is a serine/threonine protein kinase belonging to the germinal center kinase subgroup of sterile 20 protein family of kinases. MAP4K4 has been involved in regulating multiple biologic processes and a plethora of pathologies, including systemic inflammation, cardiovascular diseases, cancers, and metabolic and hepatic diseases. Recently, multiple reports have indicated the upregulation of MAP4K4 expression and signaling in hyperglycemia and liver diseases.
View Article and Find Full Text PDFMetabolic (dysfunction)-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, is a growing global health concern with no approved pharmacological treatments. At the same time, there are no standard methods to definitively screen for the presence of MASLD because of its progressive nature and symptomatic commonality with other disorders. Recent advances in molecular understanding of MASLD pathophysiology have intensified research on development of new drug molecules, repurposing of existing drugs approved for other indications, and an educated use of dietary supplements for its treatment and prophylaxis.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
October 2023
We have previously shown that a bona fide aryl hydrocarbon receptor (AhR) agonist, cinnabarinic acid (CA), protects against alcohol-induced hepatocyte apoptosis via activation of a novel AhR target gene, stanniocalcin 2 (Stc2). Stc2 translates to a secreted disulfide-linked hormone, STC2, known to function in cell development, calcium and phosphate regulation, angiogenesis, and antiapoptosis-albeit the comprehensive mechanism by which the CA-AhR-STC2 axis confers antiapoptosis is yet to be characterized. In this study, using RNA interference library screening, downstream antiapoptotic molecular signaling components involved in CA-induced STC2-mediated protection against ethanol-induced apoptosis were investigated.
View Article and Find Full Text PDFReceptors (Basel)
March 2023
Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty liver disease.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
October 2022
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition in which excess lipids accumulate in the liver and can lead to a range of progressive liver disorders including non-alcoholic steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. While lifestyle and diet modifications have proven to be effective as NAFLD treatments, they are not sustainable in the long-term, and currently no pharmacological therapies are approved to treat NAFLD. Our previous studies demonstrated that cinnabarinic acid (CA), a novel endogenous Aryl hydrocarbon Receptor (AhR) agonist, activates the AhR target gene, Stanniocalcin 2, and confers cytoprotection against a plethora of ER/oxidative stressors.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
April 2022
We recently identified upregulation of a novel aryl hydrocarbon receptor (AhR) target gene, stanniocalcin 2 (STC2), by an endogenous AhR agonist, cinnabarinic acid (CA). STC2 is a disulfide-linked homodimeric secreted glycoprotein that plays a role in various physiologic processes, including cell metabolism, inflammation, endoplasmic reticulum (ER) and oxidative stress, calcium regulation, cell proliferation, and apoptosis. Our previous studies have confirmed that CA-induced AhR-dependent STC2 expression was able to confer cytoprotection both in vitro and in vivo in response to injury induced by variety of ER/oxidative insults.
View Article and Find Full Text PDFMol Pharmacol
January 2022
Aryl hydrocarbon receptor (AhR) is a ligand-mediated transcription factor known for regulating response to xenobiotics, including prototypical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the activation of CYP1A1 expression. Upon ligand-binding, AhR translocates to the nucleus, interacts with the AhR nuclear translocator, and binds to xenobiotic response elements (XREs; GCGTG) present in the promoter region of AhR-regulated genes. Recently, we identified a novel tryptophan catabolite, cinnabarinic acid (CA), as an endogenous AhR agonist capable of activating expression of AhR target gene stanniocalcin 2 (stc2).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2021
Stanniocalcin, a glycosylated peptide hormone, first discovered in a bony fish has originally been shown to play critical role in calcium and phosphate homeostasis. Two paralogs of stanniocalcin ( and ) identified in mammals are widely expressed in variety of tissues. This review provides historical perspective on the discovery of fish and mammalian stanniocalcin, describes molecular regulation of gene, catalogs distribution as well as expression of STC2 in tissues, and provides key structural information known till date regarding mammalian STC2.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a plethora of target genes. Historically, the AhR has been studied as a regulator of xenobiotic metabolizing enzyme genes, notably cytochrome P4501A1 encoded by CYP1A1, in response to the exogenous prototypical ligand 2,3,7,8-tetrachlorodibenzo--dioxin (TCDD). AhR activity depends on its binding to the xenobiotic response element (XRE) in partnership with the AhR nuclear translocator (Arnt).
View Article and Find Full Text PDFMutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca transient, resting cytosolic Ca levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production.
View Article and Find Full Text PDFCurr Opin Toxicol
February 2017
Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR), a regulator of xenobiotic toxicity, is a member of the eukaryotic Per-Arnt-Sim domain protein family of transcription factors. Recent evidence identified a novel AhR DNA recognition sequence called the nonconsensus xenobiotic response element (NC-XRE). AhR binding to the NC-XRE in response to activation by the canonical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin resulted in concomitant recruitment of carbamoyl phosphate synthase 1 (CPS1) to the NC-XRE.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor historically known for its role in xenobiotic metabolism. Although AhR activity has previously been shown to play a cytoprotective role against intrinsic apoptotic stimuli, the underlying mechanism by which AhR confers cytoprotection against apoptosis is largely unknown. Here, we demonstrate that activation of AhR by the tryptophan catabolite cinnabarinic acid (CA) directly upregulates expression of stanniocalcin 2 (Stc2) to elicit cytoprotection against apoptosis induced by endoplasmic reticulum stress and oxidative stress.
View Article and Find Full Text PDFRapamycin at high doses (2-10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 μg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice with a skeletal muscle-specific FKBP12 deficiency.
View Article and Find Full Text PDFPrevious studies in hepatocyte-derived cell lines and the whole liver established that the aryl hydrocarbon receptor (AhR) can disrupt G1-phase cell cycle progression following exposure to persistent AhR agonists, such as TCDD (dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin). Growth arrest was attributed to inhibition of G1-phase cyclin-dependent kinase 2 (CDK2) activity. The present study examined the effect of TCDD exposure on liver regeneration following 70% partial hepatectomy in mice lacking the Cip/Kip inhibitors p21(Cip1) or p27(Kip1) responsible for regulating CDK2 activity.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
June 2013
The aryl hydrocarbon receptor (AhR) is a ligand-mediated basic helix-loop-helix transcription factor of the Per/Arnt/Sim family that regulates adaptive and toxic responses to a variety of chemical pollutants, including polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons, most notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand activation leads to AhR nuclear translocation and binding to a xenobiotic response element (XRE) in association with the Arnt to regulate gene expression. Several recent genome-wide transcriptional studies identified numerous AhR target genes that lack the canonical XRE recognition site in the promoter regions.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
March 2013
Proper hepatocyte function is vital for survival; thus, unrepaired destruction of the parenchymal tissue leading to liver decompensation is devastating. Therefore, understanding the homeostatic process regulating liver regeneration is clinically important, and evidence that the aryl hydrocarbon receptor (AhR) can promote cell survival after intrinsic apoptotic stimuli is integral to the regenerative process. The current study uses primary hepatocytes to identify survival mechanisms consistent with normal AhR biology.
View Article and Find Full Text PDFMice with a knock-in mutation (Y524S) in the type I ryanodine receptor (Ryr1), a mutation analogous to the Y522S mutation that is associated with malignant hyperthermia in humans, die when exposed to short periods of temperature elevation (≥37 °C). We show here that treatment with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevents this heat-induced sudden death in this mouse model. The protection by AICAR is independent of AMP-activated protein kinase (AMPK) activation and results from a newly identified action of the compound on mutant Ryr1 to reduce Ca(2+) leak from the sarcoplasmic reticulum to the sarcoplasm.
View Article and Find Full Text PDFCitric acid cycle intermediates, including succinate and citrate, are absorbed across the apical membrane by the NaDC1 Na+/dicarboxylate cotransporter located in the kidney and small intestine. The secondary structure model of NaDC1 contains 11 transmembrane helices (TM). TM7 was shown previously to contain determinants of citrate affinity, and Arg-349 at the extracellular end of the helix is required for transport.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
November 2010
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore.
View Article and Find Full Text PDFThe Na(+)/dicarboxylate symporter (SdcS) from Staphylococcus aureus is a homologue of the mammalian Na(+)/dicarboxylate cotransporters (NaDC1) from the solute carrier 13 (SLC13) family. This study examined succinate transport by SdcS heterologously expressed in Escherichia coli, using right-side-out (RSO) and inside-out (ISO) membrane vesicles. The K(m) values for succinate in RSO and ISO vesicles were similar, approximately 30 microM.
View Article and Find Full Text PDFThe Na+/dicarboxylate cotransporter 1 (NaDC1) is a low-affinity transporter for citric acid cycle intermediates such as succinate and citrate. The sequence of NaDC1 contains a number of conserved proline residues in predicted transmembrane helices (TMs) 7 and 10. These transmembrane domains are of particular importance because they may be involved in determining the substrate or cation-binding affinity in NaDC1.
View Article and Find Full Text PDF